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Abstract

Motor function recovery after stroke typically plateaus after six months. Case re-

ports suggest that hypnosis has the potential to stimulate further recovery of function

beyond this period. A pilot clinical investigation of hypnosis-aided recovery of motor

function after stroke is presented. Baseline hand motor performance was quantified

for six stroke subjects with a force-following task. Brain activity during the task

was measured using functional magnetic resonance imaging (fMRI). After cognitive

training with hypnosis for improved motor performance, subjects performed the task

again. Reaction times and muscle contraction and relaxation rates improved signif-

icantly after hypnosis and changes persisted during follow up testing at two weeks.

Hypnosis versus baseline fMRI results show increased activation extent in bilateral

sensorimotor cortex with an ipsilateral shift in laterality. No significant differences

were found in motor performance or fMRI results when the unaffected hand performed

the task as a control condition.

The autonomic physiology of hypnosis was studied by correlating heart rate vari-

ability (HRV) model parameters with hypnotic depth and motor performance changes.

Modeling the low frequency (LF) and high frequency (HF) components in HRV as
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a sum of two sinusoids poses a significant signal processing challenge. An Improved

Prony Algorithm (IPA) is presented for estimating the frequencies of real-valued si-

nusoids embedded in noise. The variance in estimated frequency is exactly analyzed

for the single sinusoid case and a closed-form solution is derived for the estimation of

two sinusoid frequencies.

Utilizing IPA, the effects of hypnosis on HRV were studied. Ten normal subjects

used a lever to dynamically rate their hypnotic depth. Principle findings were that

heart rate and HF frequency were negatively correlated with self-rated hypnotic depth

whereas HF amplitude was positively correlated. IPA analysis of HRV data collected

from stroke subjects in the pilot clinical investigation showed persistent HRV effects

immediately after hypnosis. Muscle relaxation rate was correlated with lower heart

rate and higher HF amplitude indicating that the autonomic relaxation effect of hyp-

nosis may play a role in the observed motor performance changes. The neuroimaging,

biomechanical and HRV results of this pilot study justify further investigation of neu-

rorehabilitation with hypnosis.
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Chapter 1

Introduction

Stroke can inflict devastating injury to the human brain and mind. Imagine

waking up unable to move your body to one side of an imaginary line, from head to

toe, right down your middle. You are able to think of words but incapable of calling

out. Your life, physical function and mental capacity all hang in the balance. This

is only the beginning of a nightmare scenario. Those who survive a stroke are faced

with a recovery process that can be the most challenging physical and mental struggle

of a lifetime.

Science does not fully understand the complexity of this injury to the brain nor

all the ways that the brain can heal. The benefits of modern medicine to the stroke

survivor are great but limited by our lack of understanding. These limitations are

keenly felt when progress in physical therapy stops and yet significant physical im-

pairments still remain. For most stroke survivors this plateau is reached six months

to a year after the stroke occurred. As the benefits of physical therapy lessen, so does

the availability of insurance reimbursements for ongoing care, leaving most survivors

1
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on their own.

Despite the recommendations of health care professionals who advise learning

strategies to cope with remaining physical impairments, some stroke survivors vig-

orously pursue alternative therapies with the hope of making further fundamental

improvements in motor function. One such alternative therapy is hypnosis.

Hypnosis in the clinical setting is vastly different from the stage hypnotist shows

that frequent comedy clubs and college campuses. Controlled clinical trials have

proven that hypnosis is effective for non-pharmacological analgesia [4, 60] and for

treating even severe refractory irritable-bowel syndrome [44, 113] among other med-

ical conditions. In the case of stroke rehabilitation however, while it is known that

psychological factors are important [53], the scientific literature on hypnosis for neu-

rorehabilitation consists mainly of case reports.

The available case reports show a trend of positive results when hypnosis is incor-

porated into standard therapy [2]. Spontaneous improvements in motor function have

been observed during hypnosis sessions [15, 21, 63] and improvements have occurred

after recovery by other means has plateaued [42, 59]. The common hypnotic method

used is to perform physical movements while vividly remembering a time prior to the

stroke event. This is a process known as hypnotic regression [36,58].

While the available reports encourage the hypothesis that hypnosis can have a

positive effect on the recovery of motor function after stroke, there is insufficient

quantitative evidence to draw any well-founded conclusions. The motivation for the

present research was to use biomedical engineering tools and knowledge to generate

quantitative evidence of the benefits of hypnosis applied to neurorehabilitation to
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enable scrutiny by a larger population that is rightfully skeptical of such alternative

therapies.

This study begins with the hypothesis that hypnotic regression to time periods

prior to the stroke event will enhance motor cortex reorganization and improve motor

performance in chronic stroke patients. Three issues arose while formulating a plan

to investigate this hypothesis: (1) Mind-body interactions in the recovery of motor

function after stroke are not well understood; (2) the physiological changes that occur

during hypnosis that correlate with hypnotic depth and hypnotic effects are not known

or easily measured; and (3) a standard means for quantitative tracking of motor

function recovery is not available. It became clear from these multiple uncertainties

that the objective of this research must be to establish a new framework for examining

this complicated hypothesis.

1.1 Mind-Body Interactions in Stroke Recovery

Although the mind cannot be quantified with scientific instruments, modern neu-

roimaging technology can measure correlates of neural activity in the brain. The

motor cortex plays an essential role in the control of motor function and has been

well studied in the context of stroke recovery. The mechanism of recovery after stroke

that is most often discussed is a reorganization of functional activation from the

damaged to the undamaged cerebral hemisphere [13, 17, 19, 43]. Other observations

concurrent with recovery include increased extent of activation [13] and shifts in the

activation foci [67,77].

Much of recent neuroimaging research on stroke recovery has used functional mag-
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netic resonance imaging (fMRI) because of its versatility with experimental design,

lack of ionizing radiation and high spatial resolution. As with all the functional imag-

ing technologies, it is necessary to perform a task during scanning that will activate

the regions of interest in the brain. The confined space and need to restrict head

motion in the fMRI environment place severe restrictions on the tasks that can be

performed. These constraints need to be considered in the experimental design and

interpretation of neuroimaging results.

1.2 The Physiology of Hypnotic Depth and Hyp-

notic Effects

In the context of clinical research on hypnosis, measurement of the physiological

changes during hypnosis can potentially provide an invaluable tool for monitoring the

hypnosis intervention. The problem is that it is not known how the physiological

changes during hypnosis correlate with the perception of hypnotic depth or how the

physiological changes affect the outcome of hypnotic suggestions. One of the objec-

tives of this research is to supply this connection between physiology and perception

and apply the result to this study of stroke recovery.

There is no single universally accepted definition of hypnosis. Some describe hyp-

nosis as a state of focused attention characterized by a lack of inhibition and literal in-

terpretation [16] while others describe hypnosis as both attentional and disattentional

processing that result in hypnotic phenomena [22]. An entirely different approach is

to describe hypnosis as a social interaction of suggestion and response [54].
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It has been demonstrated that physiological changes take place during hypno-

sis that are reflected in the power of frequency bands in the electroencephalogram

(EEG) [25,83]. Functional neuroimaging studies have also observed changes in brain

activity during the hypnotic state [64,80,105]. One of the difficulties of studying the

physiological changes in EEG and functional neuroimaging such as fMRI is that the

changes observed depend on the specific nature of hypnotic suggestions given to the

subject.

Another measure of physiological changes during hypnosis that receives a broad

range of inputs from the nervous system are the fluctuations in heart rate measured

between subsequent beats, termed heart rate variability (HRV). The spectral power

in HRV is commonly used as an indicator of the balance between the sympathetic

and parasympathetic branches of the autonomic nervous system (ANS) [1]. Changes

in HRV during hypnosis indicate a shift in the autonomic balance from sympathetic

toward greater parasympathetic activity [24,86].

Because HRV is affected in more generalized ways during hypnosis, it was se-

lected for further examination in the present research. Correlating changes in HRV

with perceptions of hypnotic depth and hypnotic phenomena require time-varying

estimates of HRV statistics and pose a significant signal processing challenge. It is

desirable that the HRV analysis use an algorithm with an elegant implementation to

reduce computational demands and facilitate error analysis. The statistics should also

have physiological interpretations that provide insight into the experimental results.

A signal processing approach that provides these attributes is described in detail in

Chapter 3.
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1.3 Tracking Motor Function Recovery

The tracking of motor function recovery was another challenging aspect of the

present study. Traditional measures of motor function recovery after stroke such

as the Fugl-Meyer Test [32], Jebson Hand Function Test [46] and Motor Activity

Log [107] are are insensitive to small differences because they rely largely on subjective

assessment of complex motor tasks. These tests are also not conducive to the fMRI

environment.

A repetitive hand grip task was developed for the present study to assess motor

function and to activate the brain regions of interest for the fMRI scans. Performance

of the task was digitized and studied to determine what changes result from the

hypnosis intervention. The motor performance measures were also correlated with

the physiological changes reflected in HRV after hypnosis. These analysis techniques

provide a starting point for understanding the interactions between perceptions in

hypnosis, motor performance and brain function.

1.4 Overview of Experiments

The present study provides preliminary insight into a multifaceted problem in

clinical hypnosis research that lies at the intersection of many formal disciplines. An

experimental paradigm was applied that combines motor function testing with func-

tional brain imaging and dynamic assessment of autonomic nervous system function.

The primary experiment with hypnosis as a therapy to improve the motor function

of stroke subjects is presented in Chapter 2. Methods in signal processing used for
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the study of heart rate variability are then described in Chapter 3. These methods

are then applied in Chapter 4 to gain insight into autonomic nervous system function

during hypnosis and during therapy with stroke patients.



Chapter 2

Hypnosis-Aided Recovery of Motor

Function After Stroke

2.1 Introduction

Every year approximately 750,000 Americans experience a stroke and 160,000 of

these will die. Two-thirds of the 4 million stroke survivors in America have moderate

to severe impairments requiring special care at an estimated annual cost of $30 billion

[3]. Cognitive factors such as personality and outlook are known to influence recovery

but are poorly characterized at this time [53]. Case reports documenting the use of

hypnosis in conjunction with rehabilitation therapy after stroke date back to the

1950’s [90]. Some of the reports describe extraordinary improvements in leg and arm

function that occurred spontaneously during the hypnotic sessions and were retained

during the following months [15,21,63]. Others document dramatic increases in limb

strength or range of motion occurring from 6 to 18 months after the stroke event

8
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when further functional improvement was not expected [42, 59]. Hypnosis has also

been used to improve patient tolerance of standard therapy [2].

Although most of the published reports are case studies, there is a trend of positive

results. The hypnotic methods employed often involve the use of mental imagery

[68]. The most common method recommended by the hypnosis literature to enhance

the recovery of motor function after stroke is revivification or regression to time

periods prior to the stroke event [36,58]. Hypnotic regression is a specific methodology

wherein the subject is given suggestions to physically, cognitively and emotionally feel

as though he or she is performing an exercise in a state of remembered wellness [6].

The reorganization of motor cortex during recovery from stroke is a well-studied

area in the functional brain imaging literature. Most studies found increased activity

in the undamaged hemisphere during movement of the affected limb [13, 17, 19, 43].

Some of the studies found changes in extent of activation during recovery [13], whereas

others found that the location of sensorimotor activation shifts in a lateral [67] or pos-

terior direction [77]. Lesion studies suggest that adjacent undamaged cortex and the

contralateral hemisphere system assume the functions of the necrotic tissue [27]. The

remapping of movement representations in the primary motor cortex after rehabil-

itation training has been invasively demonstrated in animal models of stroke [71].

Both humans and other mammals can experience considerable recovery of motor

function after brain injury. Neurophysiological studies in human and animal models

have demonstrated the extensive potential of the adult cerebral cortex for functional

plasticity [70].

Research with intracortical microstimulation (ICMS) techniques provides a more
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mechanistic explanation of the functional recovery process. One potential mechanism

for reorganization to peripheral regions is that preexisting lateral excitatory connec-

tions are unmasked by decreased intracortical inhibition [45]. There is considerable

evidence for the existence of horizontally connected neurons throughout the cortex

that are normally inhibited [112]. These horizontally connected neurons use the neu-

rotransmitter γ-aminobutyric acid (GABA) to inhibit otherwise excitatory neurons

from neighboring functional maps. Motor skill learning is known to cause an enlarge-

ment of cortical representation [50] and increase synaptic density [55] in the motor

cortex. These same mechanisms are thought to play a role in the recovery of function

after damage to the cortex.

Common characteristics used to define hypnosis are focused attention, a lack of

inhibition and a literalness of interpretation [16]. Crawford proposes that hypno-

sis is a state of enhanced attention that activates an interplay between cortical and

subcortical brain dynamics during hypnotic phenomena such as attentional and dis-

attentional processes [22]. Kihlstrom defines hypnosis as a social interaction in which

one person, the subject, responds to suggestions offered by another person, the hyp-

notist, for experiences involving alterations in perception, memory, and action [54].

Within the present study, hypnosis was viewed as an altered physiological state that

is correlated with a subjective perception of hypnotic depth. Evidence provided in

this thesis support this view of the hypnosis.

A small number of studies have examined the hypnotic state with functional brain

imaging. Studies using PET have characterized the neural correlates of certain hyp-

notic suggestions [64, 80]. The commonly held belief that the hypnotic state is char-



Chapter 2: Hypnosis-Aided Recovery of Motor Function After Stroke 11

acterized by certain EEG rhythms is still controversial [75].

The hypothesis for the present study is that hypnotic regression to time periods

prior to the stroke event will enhance motor cortex reorganization and improve limb

motor performance in chronic stroke patients. This is the first controlled study of

the effects of hypnosis on stroke rehabilitation that examines both neurological and

functional outcomes. The study sought to address the following aims:

1. Quantify the effects of hypnosis on motor task performance by stroke patients;

2. Seek evidence of the effects of hypnosis on motor cortex reorganization in stroke

patients using functional brain imaging;

3. Determine whether hypnosis-induced gains in motor performance are main-

tained at follow up.

2.2 Methods

The overall approach was to combine into a single experiment the hypnosis in-

tervention, motor function testing and measurement of brain activity with functional

magnetic resonance imaging (fMRI). This was a pilot study with six subjects. Be-

cause individual variation between subjects was expected to be significant, a serial

design of 12 experimental sessions per subject was chosen. This enabled each subject

to serve as his or her own control by establishing a baseline of motor function be-

fore introducing the hypnosis intervention and later measuring motor function during

follow-up sessions.
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The motor task selected was squeezing a hand grip because of its simplicity and

ease of integration into the MRI environment of restricted space, loud noise and

controlled temporal paradigms. The performance of this simple task was quantita-

tively assessed through analysis of the grip force trajectory. This experimental design

enabled concurrent measurement of motor function and brain activity. During the

course of this study, case descriptions emerged as a third source of data.

2.2.1 Subjects

Six subjects with a unilateral stroke affecting the upper extremity participated

in the study. The first inclusion criteria was that the stroke must have occurred at

least six months prior to participation in the study so that little or no spontaneous

recovery was expected [110]. All subjects were medically stable and had a Mini-

Mental State Examination (MMSE) [29] score of at least 24. The level of recovery

for each subject was determined with the Upper Extremity Motor Component of

the Fugl-Meyer Test [32]. The ability of the affected hand to squeeze a hand grip

with measurable force was required. Hypnotizability was assessed with the Hypnotic

Induction Profile (HIP) [92]. Informed consent was obtained in accordance with a

protocol approved by the the local human subjects protection committee. The subject

demographics are summarized in table 2.1.

Each subject was provided with a brief education about hypnosis prior to be-

ginning the experiment. This educational session was necessary to dispel common

misconceptions about hypnosis and to allow subjects to express questions or con-

cerns. The sessions included a brief hypnotic induction to familiarize subjects with
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Subject Age Gender Side of Months Level of
Number Hemiparesis Post Stroke Recovery

1 51 Male Left 26 Good
2 45 Male Left 34 Moderate
3 63 Female Left 39 Poor
4 39 Male Right 6 Moderate
5 47 Male Right 30 Good
6 52 Female Left 79 Poor

Table 2.1: Demographic data for the stroke subjects. All subjects were right-handed
prior to having a stroke. Subjects 4 and 5 are now left hand dominant because of
hemiparesis. All were determined to have intact hypnotizability as assessed with
the Hypnotic Induction Profile. Level of recovery was determined with the Upper
Extremity Motor Component of the Fugl-Meyer Test as good (44-66), moderate (22-
43) or poor (21 and below).

the hypnotic state and to build their interest in participating in the study. Each

subject agreed to undergo 12 study sessions held 1-3 times per week.

2.2.2 Experimental Design

The experimenter who is also the author conducted all of the hypnosis sessions.

Prior to beginning the present study, he completed over 200 hours of training at

the Hypnotherapy Training Institute in Santa Rosa, California. He has five years of

experience practicing hypnosis and is a certified member of the New England Society

of Clinical Hypnosis.

A repeated measures experimental design was used wherein each subject served

as his or her own control to accommodate the individual differences in lesion site and

impairment. The typical distribution of sessions over the course of the experiment

is shown in table 2.2. Baseline motor performance was established during the first 4

sessions of the study. The first functional magnetic resonance imaging (fMRI) scan
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took place on the last baseline session. Hypnosis was then used as an intervention

for the next 4-5 sessions. Motor performance testing was conducted prior to hypnotic

induction and after arousal from hypnosis on each of the hypnosis sessions. The second

fMRI session was conducted on the last intervention session. The last 3-4 sessions of

the study consisted of motor testing without hypnosis to monitor the stability of any

changes that might have taken place.

Baseline Intervention Follow Up
Experimental Session 1 2 3 4 5 6 7 8 9 10 11 12
Motor Performance Testing ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Functional Brain Imaging • •

Table 2.2: Schedule of testing sessions for the repeated measures experimental design.

Induction of the hypnotic state was accomplished by standard methods involv-

ing sequential relaxation of the body combined with mental imagery. The hypnotic

suggestions focused on mental rehearsal and revivification of successful task perfor-

mance. The control condition for sessions without hypnosis was conversation with

the subject about innocuous biographical information. The hypnotic induction and

suggestions followed loose script. Although it is desirable to use identical interaction

with all subjects to reduce experimental variability, the pilot nature of this study

required greater flexibility in the implementation of hypnosis.

2.2.3 Motor Function Testing

The motor function testing sought to measure motor performance with a simple

task that could be performed by most stroke subjects and simultaneously activate

motor cortical regions for functional brain imaging. Hand-grip testing was selected
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as the task because the ability to perform hand-grip exercises returns earlier than

individualized finger movements [38], and also correlates with other measures of upper

limb function [99].

Subjects grasped a hand held fMRI-compatible dynamometer and attempted to

follow a target force shown graphically on a computer screen. The target remained

at zero force for 12 seconds then jumped up for 3 seconds to a force level equal to

one-third the maximum grip force of the subject’s affected hand. This 15 second cycle

was repeated 18 times and was bracketed by 15 seconds of zero target force, totaling

300 seconds or 5 minutes. A segment of the target trajectory and a subject’s response

is shown in figure 2.1.

Both auditory and visual cues were given to “go” and “stop” squeezing. Subjects

were instructed to respond quickly when the force jumped up and to accurately

match the target force during the 3 second holding period. During fMRI sessions, the

computer display for the motor function testing was projected to the subject with a

mirror and screen. Audio cues were played for the subjects through headphones.

The subject responses were recorded and then statistically classified into rest,

transition and peak force conditions as shown in figure 2.2. The following classification

scheme was used: Periods when the force level was nearest to zero were classified as

rest. The transition from rest to peak began when the force level was closer to

one-half the peak force than to zero and continued until the force level was closest

to the peak force. The transition between peak and rest was defined in the same

manner in reverse. The peak condition was when the force was closest to the peak

force. The time points delineating these conditions were varied until the squared
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Figure 2.1: One minute sample of target force trajectory and subject response during
motor function testing of the affected hand of Subject 2. The reaction time delay,
force errors and gradual muscle relaxation are apparent.

deviations between the dynamic force level and assumed forces for each condition

were minimized. This method is more robust than simple thresholding because the

number of condition changes is fixed.

Once the response trajectory was classified into rest, transition and peak condi-

tions, a number of error metrics were calculated. The start delay and stop delay are

the amount of time that elapsed between when a target force change and the start of

the transition condition. These measures reflect reaction time. The rise time and fall

times are the duration of the transition conditions and reflect how quickly muscle re-

cruitment and derecruitment took place. The peak error is the difference between the

target and measured peak forces. The peak standard deviation is a measure of force

stability during the peak condition. The peak error measures bias when attempting

to hold the target force.
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Figure 2.2: Classifying a subject’s response to the force following task and defining
error metrics. Rest, peak and transition are defined by when the force is nearest to
zero, one-half peak or peak force respectively. The start and stop delay error metrics
assess reaction times. The rise and fall times are measures of muscle recruitment and
derecruitment. Peak error and standard deviation measure force level errors.

2.2.4 Functional Brain Imaging

The objective of the functional brain imaging was to measure the brain activity

associated with motor task performance in order to ascertain the extent of cortical

recruitment during different experimental conditions.

A Siemens Allegra 3.0 Tesla MRI Scanner with quadrature head coil was used.

Head motion was minimized by packing pillows around the head of the subject and

placing a stabilizing straps over the chest and upper arm. The anatomical scans col-

lected for the functional overlays were conventional T2-weighted gradient-echo scans.

The following settings were used: Horizontal slices; repetition time (TR) = 3310 ms;

echo time (TE) = 104 ms; field of view = 200 x 200 mm2; in-plane resolution 0.4
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x 0.4 mm2; 22 slices; slice thickness = 5 mm; 1 mm gap between slices; flip angle

150◦. Slices were aligned parallel with the line connecting the anterior commissure

to the posterior commissure (AC-PC line) and covered the cerebral hemispheres and

superior cerebellum.

The functional images were generated using T2*-weighted gradient-echo blood

oxygen level-dependent (BOLD) scans with the following echo planer imaging (EPI)

sequence: Horizontal slices; TR 1500 ms; TE 30 ms; field of view 200 x 200 mm2; in-

plane resolution 3.1 x 3.1 mm2; 22 slices; slice thickness = 5 mm; 1 mm gap between

slices; flip angle 90◦; 4 dummy scans followed by 200 acquisitions (200 images/slice).

The slice prescription was identical to the T2 anatomical scans. The Siemens PACE

algorithm was used to dynamically correct for head motion during the scans.

2.2.5 Analysis of fMRI Data

Pre-Processing

Further motion correction was performed yielding motion corrected images and

time-varying translation Mtranslation(t) and rotation Mrotation(t) estimates [47]. The

data was smoothed in plane with a 5x5 pixel Hanning window (≈ 7.7 mm FWHM).

The median value from the 200 acquisitions at each voxel was calculated to obtain a

baseline signal intensity arising from anatomical structure rather than brain activity.

These median values within each slice were then used to segment the brain containing

voxels from the background by removing voxels with a median intensity of near zero.

Any disjoint regions remaining from the intensity segmentation were removed by

keeping only the largest region, which invariably corresponded to the brain. Any
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background voxels included in the brain region were removed by dilating and then

eroding the brain region and a 3 by 3 voxel kernel. The temporal data within each

voxel was then filtered with a high-pass cutoff frequency of 0.044 Hz with a zero-phase

51 point finite impulse response (FIR) filter designed with a Hamming window.

Calculating Statistical Parametric Maps

The hemodynamic response function was modeled with a gamma function as de-

scribed by Boynton et al. [8]

H(t) =
(t/τ)n−1e−t/τ

τ(n− 1)!
. (2.1)

The time constant was τ = 1.25 seconds and the phase delay was n = 3 following

examples in the literature [11]. A pure delay of 3 seconds was added to account for

the pure delay in the hemodynamic response. The hemodynamic response function

H(t) was then convolved with the target force trajectory to model the hemodynamic

response Hmodel(t).

A design matrix G was then defined with columns for the hemodynamic model

and motion estimates.

G =

[
Hmodel(t) Mtranslation(t) Mrotation(t)

]
, (2.2)

An FIR smoothing kernel with a 0.375 Hz cutoff frequency was then convolved

into the rows of an identity matrix to create a low-pass filtering matrix K. This

low-pass filtering matrix and the design matrix were used following the SPM method

of Worsley and Friston to calculate a t statistic and p value for each voxel [114]. This

method uses the hemodynamic model and motion estimates as regressors and corrects

the degrees of freedom for temporal smoothing.
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Anatomical Overlay

The segmented brain image from each functional run was manually registered

to the subject’s T2 anatomical scan by a rigid transformation. The p-value maps

were re-sampled to the same resolution as the anatomical scan and then registered to

the T2 anatomical images. Since the p values reported are uncorrected for multiple

comparisons, a significance threshold of p ≤ 10−6 was used for the functional overlays

in every instance except for Subject 3 where a threshold of p ≤ 10−3 was used because

that subject visualized the hand movements rather than perform the movements

during functional scanning.

Region of Interest Analysis

The fMRI results are maps of brain activity from contrasting the hand-grip task

with visual fixation within a single experimental condition (i.e. baseline, pre- or

post-hypnosis, and follow up). Ideally, the activation maps from one condition can

be compared with other conditions on a voxel by voxel basis. This approach is

problematic because of the relative instability in fMRI measurements between runs

[18]. To work around this problem, the number of activated voxels in relatively large

functional regions were compared.

The five horizontal anatomical slices that best covered the volume of brain superior

to the lateral ventricles were chosen for a region of interest (ROI) analysis. The brain

shown in each slice was divided into 5 ROIs in each hemisphere (10 ROIs total) in

the following way. The supplementary motor area (SMA) was bounded medially

by the longitudinal fissure, laterally by the extent of gray matter extending from
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this fissure, caudally by the midway between the projection of the pre-central and

central sulci to the longitudinal fissure, and rostrally by the extent of the brain.

The pre-frontal cortex (PFC) was bounded medially by the SMA and longitudinal

fissure caudally by the pre-central sulcus and its projection and otherwise by the

brain extent. The motor cortex (MC) was bounded by the longitudinal fissure, pre-

central and central sulci and their projections to the longitudinal fissure and the brain

extent laterally. The somatosensory cortex (SC) was bounded medially, laterally,

rostrally and caudally by the longitudinal fissure, brain extent, central sulcus and

post-central sulcus respectively. The posterior parietal cortex (PPC) was bounded by

the longitudinal fissure, post-central sulcus and brain extent. An illustrative example

of a segmented slice is shown in figure 2.3. After segmenting each slice, the ROIs from
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Figure 2.3: Segmented Brain Slice

the slices were combined into 10 ROI volumes. The number of significantly activated
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voxels within each ROI were tabulated under each experimental condition in the

fMRI data. This number of voxels was then converted to significantly activated brain

volume. This is a measure of regional activation extent. The volume of significantly

activated brain volume was used to compare the different experimental conditions in

the fMRI data.

2.2.6 Comparisons Between Experimental Conditions

Since only two of the experimental sessions included fMRI measurement of brain

activity during motor function testing, the number of experimental conditions is re-

duced with the fMRI data as shown in table 2.3. For the motor testing there is

baseline data from the affected and unaffected hand, bilateral pre-hypnotic induction

data, bilateral post-hypnosis data and bilateral data at follow up. Each experimental

condition contains more than 100 individual force-following trials. Motor testing on

each hand consisted of multiple runs of 15-18 individual trials of the force following

task. A range of 2 to 6 runs of the task were performed on each hand during a given

session in order to reduce the effects of within session practice. The order of hand

testing was randomly varied for the same reason. The number of runs on the left and

right hands were always equal during a session so that the total amount of training

on each hand was equal.

The fMRI data was only collected during the last baseline session and the last

hypnosis session as shown previously in table 2.2. The baseline fMRI session revealed

activation during movement of the affected and unaffected hand. The hypnosis fMRI

session included brain activation during motor performance just prior to the hyp-
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notic induction and immediately after the hypnosis session on both the affected and

unaffected hand.

Session Type Baseline Intervention Follow Up
Inter-Session Period Pre-Hypnosis Post-Hypnosis
Hand Performing Task L R L R L R L R
Motor Function Testing ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Functional Brain Imaging • • • • • •

Table 2.3: Experimental conditions for motor function testing and fMRI data.

Two of the subjects had lesions in the left hemisphere resulting in right-sided

hemiparesis. All the fMRI data for these subjects was flipped about the midline of

the brain. The motor function data for these subjects for the left and right hands was

also reversed. As a result, analysis could be performed as if all subjects had right-

hemisphere strokes and left-sided hemiparesis. Reversing the left and right hand

data also effectively switched the handedness of these two subjects. This handedness

confound is less important than the lesion location. The fMRI results show horizontal

slices following the radiological convention of placing the right-cerebral hemisphere

on the left-hand side of the page.

2.3 Results

2.3.1 Motor Function Results

Subjects learned to perform the force following task within just a few trials. Trial

to trial improvement in performance of the task plateaued within the first full run of

18 force following trials on each hand. The first two runs of the first experimental
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session were discarded so that any improvements from strategy and habituation would

not skew the results. Deficits in motor function were immediately apparent in motor

performance of the affected hand versus the unaffected hand in all subjects.

The variance was relatively large in the error metrics shown in figure 2.2 (start

delay, stop delay, rise time, fall time, peak error and peak standard deviation). The

large variance was in part due to outliers caused by subject errors such as missed

cues, false starts and stops and extraneous movements (e.g. head scratching while

holding force sensor). The chosen method for removing these outliers was to discard

the highest and lowest 10% of all error metric data points within each experimental

condition. Even after trimming outliers in this way, the average standard deviation

in the error metrics was 22% of the means.

The data were examined for trends as a function of session number but consis-

tent relationships between subjects were not found. Uncovering temporal trends was

confounded by large variance in performance between sessions. However, by aver-

aging across both sessions and trials within each experimental condition, some clear

differences emerge.

The following method was used to summarize the mean performance under the

experimental conditions for each subject. First the mean values and standard devia-

tions for each error metric were calculated and normalized by the mean baseline error

metric for each hand. Two-sample t tests were conducted between the baseline data

and each of the three other conditions: pre-hypnotic induction, post-hypnosis and

follow up. The t tests were conducted versus the alternative hypothesis that the ex-

perimental mean was less than baseline (one-sided test) with a significance threshold
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of p ≤ 0.001. This conservative threshold was chosen because the degrees of freedom

in each test was large (typically df > 100). The number of subjects with significant

differences in this test are shown by the numbers above the group averages in figure

2.4.

Subject 3, who found the force following task to be too difficult with her paretic

hand, performed a repeated maximum grip force task instead. She performed the grip

force task following exactly the same paradigm as the force following task. Perfor-

mance was simply assessed by the mean force produced across trials. Her grip force

increased on the first intervention session and remained elevated during the following

sessions during pre- and post-hypnosis testing and follow up. Her results are shown

in figure 2.5.

Group differences were summarized by combining the mean normalized error met-

rics from each subject. Since the baseline values were used for this normalization, the

baseline group means are all identically 1. A one-sample t test was used to compare

the mean normalized error metrics across subjects to 1 versus the alternative hypoth-

esis that the experimental means are less than 1 (one-sided test). The group means

are shown in figure 2.4. The experimental conditions with significant differences from

baseline are marked by ∗.

Some consistent differences in motor performance were observed in all subjects.

Significant differences occurred six times more often with the paretic (left) hand

compared with the non-paretic (right) hand. Performance by the paretic hand was

most often improved in the immediate post-hypnosis condition when compared to

baseline. Two of the error metrics from the paretic hand results, start delay and fall
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Figure 2.4: Mean normalized error metrics for all experimental conditions averaged
across subjects. Baseline results are from before any hypnosis was conducted. Pre-
hypnosis data is from multiple hypnosis intervention sessions just before the hypnotic
induction. The error bars are standard error. Significant differences between group
means relative to the normalized baseline are indicated by ∗ (one-sample, one-sided t
test p ≤ 0.05). The number of subjects showing significant decreases in error metrics
are shown by the number above each bar (two-sample, one-sided t test, p ≤ 0.001).
The number of subjects was 5 for left hand testing and 6 for right hand testing because
Subject 3 used an alternative test for her left hand.
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Figure 2.5: Maximum grip force results for Subject 3. All forces were normalized by
the baseline mean. The error bars are standard error. Experimental conditions that
are significantly increased from baseline are marked with a ∗ (two-sample, one-sided
t test p ≤ 0.001).

time, most frequently showed significant differences within individual subjects and

also showed significant improvement in the group comparisons.

2.3.2 fMRI Results

The fMRI results revealed considerable activity in a number of functional regions

during performance of the force following task under all experimental conditions.

The most prominent activation sites were in the sensorimotor cortex (SMC) followed

by supplementary motor areas (SMA) and premotor cortex (PMC). This finding is

consistent with previous fMRI studies of hand grip force [20, 102]. The dominance

of the contralateral hemisphere during motor control was observed in a number of

subjects. This normal laterality was not apparent in the more severely impaired

subjects, which is consistent with known patterns of cortical reorganization after
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stroke [19].

An example of fMRI results from Subject 2 performing the force following task

with his paretic (left) hand is shown along side an anatomical slice overlaid with the

region of interest boundaries in figure 2.6. The activity in the the right hemisphere

motor and sensory cortices (left side of the image) is fairly consistent between the

baseline and pre-hypnosis conditions. During the post-hypnosis scan however, the

activation increases in extent in the medial direction. New activation is apparent in

left hemisphere post-hypnosis in sensorimotor cortex. Significant activity in the SMA

decreased in extent between the baseline and pre-hypnosis conditions, but reached

the largest extent after hypnosis.

The percent of significantly activated volume in the brain was calculated for each

subject by totaling the significantly activated volume in all ROIs over the 5 slices that

best covered the superior portion of the cerebral hemispheres and then dividing by the

sum of ROI volumes in those slices. When all experimental conditions were combined,

the average percent activation varied by subject from 3.9% to 11.3%. Because this

is a fairly wide range, the percent activation for each experimental condition was

normalized by the average percent activation for each subject. This relative activation

volume is shown in figure 2.7. During task performance by the paretic hand, the

results show a modest increase in extent of activity during the pre-hypnosis condition

and a much larger increase immediately post-hypnosis. Because the pre-hypnosis

condition occurs at the end of the intervention phase of the study, this condition can

also be viewed as 3-5 days post-hypnosis.

A laterality index (LI) was calculated to determine the relative contribution of
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Figure 2.6: Subject 2, left (paretic) hand motor function activation measured with
fMRI (slice 17). Axes are labeled in mm. The T2 anatomical scan is shown in gray
scale and the significance of brain activation is shown in pseudo-color. The scale on the
color bar is − log10(p values). The significance threshold is p < 10−6 (uncorrected).
The left side of the image is the right hemisphere following radiological convention.
Significantly activated regions are in the bilateral SMA, and sensorimotor areas.
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motor cortical areas in each hemisphere during performance of the task. The index

was defined as

LI =
(cMC + cPFC + cSMA)− (iMC + iPFC + iSMA)

(cMC + cPFC + cSMA) + (iMC + iPFC + iSMA)
, (2.3)

where c indicates the contralateral and i the ipsilateral hemisphere respectively, MC

is motor cortex, PFC is pre-frontal cortex and SMA is the supplementary motor

area. Hence, a positive LI indicates dominant contralateral control and a negative

LI indicates ipsilateral dominance. The results are shown in figure 2.8. When the

unaffected (right) hand performed the task, contralateral dominance was observed

and no large changes occurred as a result of the hypnosis intervention. The affected

hand, however, shows a clear trend toward greater ipsilateral control immediately

after hypnosis and the effect appears to persist until the pre-hypnosis condition of

the next experimental session.

The relative percent of significantly activated brain volume was then averaged

across subjects within each ROI. Results showing the group averages of relative ac-

tivation volume in right and left hemisphere ROIs during left and right hand task

performance are shown in figure 2.9. Paired t tests were performed of pre- and post-

hypnosis conditions relative to baseline. The alternative hypothesis was that the hyp-

nosis condition is greater than baseline at a significance level of p ≤ 0.05 (one-sided).

In general, more activity was present in SMA and sensorimotor areas compared to

other ROIs. Significantly increased activated brain volume was found in the motor

and somatosensory ROIs in the left and right cerebral hemispheres during task per-

formance by the paretic hand. An increasing trend in activated volume is apparent

under these same conditions going from baseline to pre-hypnosis to post-hypnosis.
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Figure 2.7: Mean relative activated brain volume for each experimental condition.
The error bars are standard error. The increase in activated volume between affected
(left) hand after hypnosis compaired to baseline approached significance (paired t
test, p = 0.068, N = 6).
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Figure 2.8: Laterality index for each experimental condition. The error bars are
standard error. A significant decrease in the laterality index of the affected (left) hand
after hypnosis compaired to baseline (paired t test, p ≤ 0.05, N = 6). Significance is
marked by ∗.
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Figure 2.9: Mean relative activated brain volume in each ROI and experimental condi-
tion. Error bars are standard error. Comparisons were made of pre- and post-hypnosis
conditions relative to baseline (paired t test, p ≤ 0.05). Significant differences are
marked by ∗.
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2.3.3 Case Descriptions

Subject 1

The first subject used to be the captain of a large ship prior to having a stroke. His

passion for this job motivated him to recover sufficient functional ability to return to

work. Although his general level of recovery was good, he complained that he lacked

the dexterity to perform most tasks with his left hand and described it as a club.

Fractional relaxation was used as a hypnotic induction because it has a strong physical

component and the subject related to it easily. The hypnotic deepening techniques

focused on returning to work on the ship on a perfect day with nice weather, light

chop on the water and no traffic nearby.

He visualized entering his office on the ship where we established a set of “ground

rules” for mental practice of hand movements. The rules were to: maintain a positive

mental attitude; allow distractions to pass by without affecting concentration; relax

into the moment; suspend judgment; and accept any outcome that occurs. With

these rules established, he proceeded to count out money for the week’s payroll. This

mental task was chosen because it requires considerable bi-manual dexterity. The

subject occasionally used the phrase, “countin’ the money.” This phrase was adopted

as an anchor that the subject was instructed to repeat whenever the task felt most

natural and automatic.

Next the subject was instructed to mentally perform sequential opposition of the

thumb to each finger first on the right hand and then on the left. He mentally

performed this with ease on the right but was unable to on the left side. He was then

instructed to repeat the key phrase and then cycle back and forth between mental
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practice on the right then on the left. This process enabled the subject to achieve

perfect mental execution of the sequential finger opposition task.

The subject was then asked to mentally perform the task while watching each of

his hands in turn. It was again difficult to mentally perform the task on the left side.

The key phrase was used again with cycling between eyes-closed and eyes-open mental

practice until perfect mental execution was achieved. Now the subject was instructed

to perform the task physically and a similar process ensued that culminated in the

subject touching his thumb to his ring finger for the first time since his stroke.

At the start of subsequent hypnosis sessions, the subject’s thumb range of motion

remained improved from baseline but not as significantly as immediately after the

hypnosis intervention. On the forth hypnosis session, the subject came in and an-

nounced that he was practicing the visualizations on a daily basis and that he tied his

own shoelaces for the first time. He remarked that, “after my doctor told me that I

reached 99% of recovery, I just gave up. Now I feel like I am making progress again.”

When asked to describe what was different after hypnosis he explained, “When I do

it perfectly, there’s no thinking, it just happens. It’s just a relaxed reaction.”

Subject 2

Subject 2 used to work in a biology research lab and enjoyed riding a motorcycle

prior to his stroke. Having a moderate level of recovery after stroke, he walked with an

ankle brace but was unable to use his impaired arm or hand for functional tasks. His

primary complaint was that his left hand and arm would tense up during movements

and require manual opening and stretching to relax. Fractional relaxation was chosen
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as an induction technique and imagery of relaxing while floating on the water at a

favorite lake was used to deepen the hypnotic trance.

The mental task of operating motorcycle controls was used with limited success.

While the subject enjoyed the visualizations, the mental practice was not transitioning

into physical improvement as easily as with Subject 1. More attention was focused

on the relaxation imagery at the lake. The subject observed that muscle tension was

noticeable reduced by the imagery of floating on the water.

To pursue this observation further, the subject was instructed to perform a series

of elbow bends prior to hypnosis and then again immediately after hypnosis. The

spasticity that occurred during the pre-hypnosis elbow bends did not occur after the

hypnosis. The subject reported keeping his mind on the floating sensation while

performing the task after hypnosis. This spasticity reduction effect was reproducible

during subsequent sessions.

After a number of hypnosis sessions, the subject reported increased proprioceptive

awareness and tactile sensation in his hand. He commented that, “Hypnosis releases

tension and removes distractions” and that, “practicing after hypnosis enables me

to incorporate new sensations and strategies.” The subject elected to practice the

visualizations in the evening every day and found that it relaxed him and put him in

a better mood during the following day.

Even though there was no significant improvement in functional utility, the subject

reported gaining a sense of utility for his left hand where he used to feel that it was

useless. He reported using less effort to squeeze his hand and said that he can now

better feel the muscles release.



Chapter 2: Hypnosis-Aided Recovery of Motor Function After Stroke 36

Subject 3

Subject 3 loved reading and family and was passionate about the village where

she grew up. She had the most severe physical impairment of the subjects in this

study. She required the use of a wheelchair and had almost no movement ability with

her paretic arm. Visual focusing and downward counting were used for the hypnotic

inductions. Visualization of walking up a favorite twisting path was used for hypnotic

deepening. She was instructed to notice every detail from the smells in the air to the

way the pebbly stones on the path crunched under her feet.

Force control was too difficult with her left hand so a maximal grip task was sub-

stituted. She remarked feeling disconnected with her left side, “like it was numb”

and said that it was easier for her to grip her left hand when visually fixating on her

hand. Initial hypnotic suggestions used were for increased awareness and connectivity

with her left arm and hand. When asked what she was imagining, the subject de-

scribed, “I can see gray wires inside my arm that connect to my hand. The wires are

a tangled up mess and I can’t tell what goes where.” Suggestions were given to color

the wires one at a time and to add labels indicating which wire went to which finger

and so forth (untangling the wires was too difficult). The subject reported feeling

increased awareness of her hand after this process. Subsequent measures of hand grip

force were dramatically increased as shown in figure 2.5. Increases in grip force were

largely maintained during the pre-hypnosis tests during the following intervention

sessions.

Subject 3 was very self-directed with the hypnotic imagery. During one hypnosis

session she imagined the wires in her arm again but now sent green keys down the
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wires to “unlock” her fingers and then red keys back up to her brain when it was time

to stop a movement.

When asked what changes during hypnosis, she said “I respond to how my arm is

responding” and further described this as “going with the flow.” She reported more

awareness of her thumb movements and reduced numbness. She realized that her

mind often wanders when using her left hand and that the hypnosis helps her to

maintain focus.

Subject 4

Subject 4 was a physicist who also had 30 years of experience playing the cello and

was passionate about music. His level of recovery was moderate. He walked with an

ankle brace and was able to perform gross movements with his affected arm. Mental

focusing combined with fractional relaxation was used as the induction. Imagery

from a vacation house was used for hypnotic deepening. The mental task of playing

a phrase on the cello was chosen because of his significant previous experience of

bowing with his now impaired arm. Visualizations focused on fluid movement of the

bow, graceful slurs and bow changes. The anchor words “precise and relaxed” were

used. The subject found that imagining the sound of the instrument that resulted

from proper movement was more natural than visualizing the movements themselves.

While the subject found that mental practice on the cello was enjoyable, actually

performing the movements was a significant emotional challenge and he reported a

sense of loss and regret when moving. This turned out to be the first time the subject

has allowed himself to focus on his cello since having a stroke. The subject chose not



Chapter 2: Hypnosis-Aided Recovery of Motor Function After Stroke 38

to change the task but rather to spend more time on the mental practice and to select

music that he could bring to logical completion during the short practice intervals.

He described the mental cello practice as a process of emotional expression through

story. “The music is always the same book but the story is different every time it is

played.”

In time the physical practice of bowing movements became more enjoyable just like

the mental practice. Physical and mental practice of the movements were alternated

until the proper mental execution was maintained even during physical practice with

impairment. The subject elected to practice at home and felt that his arm extension

was improving.

During one conversation, the subject made a precision grip between his thumb

and index finger for first time since his stroke. Improvements in functional ability

were apparent the study’s end. An example was the gained ability to pick up cans.

Subject 5

Subject 5 was a restaurant manager prior to his stroke and was passionate about

his family and loved sports. He walked without assistance and could use his affected

arm and hand for non-dexterous functional tasks. He complained of less than full

range of motion in hand and wrist movements and low endurance with his affected

arm. Mental focusing and fractional relaxation was used for inductions. His preferred

imagery for hypnotic deepening was descending an elevator in a luxury hotel and

then heading out of the lobby onto the beach where he would watch the clouds go by.

The mental tasks chosen for practice in hypnosis were touch typing and dribbling a
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basketball.

The subject imagined his movements to be automatic when mentally practicing

the typing and dribbling. The subject also mentally practiced some free throws with

the basketball. The same strategy of cycling between mental and physical practice

with the left and right hands was employed. The subject elected to practice the

basketball visualizations at home where he could use an actual basketball for the

physical practice. He returned at the next session reporting that he can now bounce

a ball about 10 times when before he could only achieve 1 or 2 bounces.

When asked about the effects of hypnosis, the subject reported that hypnosis

helps with his concentration. He said that the hypnosis during the study sessions

results in a high intensity of concentration that he could not achieve when practicing

on his own. Increases were observed in range of motion for wrist rotation and finger

extension.

Subject 6

Subject 6 loved to visit a secluded rocky beach with her husband where they

would watch the waves break and dance through the rocks back to the ocean. Her

professional career was interrupted by a severe stroke from which she was not expected

to survive. The love of her family and laughing in the hospital carried her through

those early days. During the following months at home she cultivated a zealous

passion for the Boston Red Sox.

Following the advise of her therapist, she focused the majority of her time and

energy on recovering the ability to walk at the expense of her upper extremity func-



Chapter 2: Hypnosis-Aided Recovery of Motor Function After Stroke 40

tion. At the time she found all the exercises to be very fatiguing and said that her

therapists, “pretty much discouraged me from practicing with my hand because they

said it was futile with my high muscle tone.” She felt that it came down to a simple

choice, “either you accept the disability or fight it and fighting became so frustrating

that eventually, I just gave up and decided to ignore my arm. I’m not sure now that

was such a good idea.”

The natural choice for relaxation imagery was the rocky beach, a scene that is

highly conducive to hypnotic relaxation. An early consideration for mental practice

was playing the piano because the subject had many years of experience with the

instrument prior to her stroke. The emotional associations in this case proved to

be too great for this mental task to be used productively. During the next session,

imagery of the computer screen while performing the force following task was used

instead.

Initially, the subject was unable to imagine good performance with her paretic

hand. The same paradigm used with the other subjects of mental practice then

physical practice in bilateral alternating blocks of trials was used to achieve perfect

visualization. The subject was highly elated after hypnosis once the perfect mental

practice was achieved. Her muscle contraction rate increased during subsequent motor

performance testing. Through the continued use of the force following visualization,

her performance improvements steadily continued.

By the third hypnosis session, it had become noticeably easier to remove the hand

grip from the subject’s paretic hand at the end of each session. The level of muscular

release after the force following trials had improved. On the last day of the study,
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the subject reported feeling encouraged to restart the daily stretching and exercises

with her affected arm that she had abandoned years ago.

2.4 Discussion

It is important to consider first that this research was a pilot study of the effects

of hypnosis on the recovery of motor function after stroke. This study addressed

the hypothesis that hypnotic regression to time periods prior to the stroke event will

enhance motor cortex reorganization and improve limb motor performance in chronic

stroke patients.

The first specific aim was to quantify the effects of hypnosis on motor task perfor-

mance by stroke patients. The most consistent effects of the hypnosis intervention on

the force following task were decreases in reaction time and faster muscle contraction

and relaxation rate. Also observed were a reduction in spasticity, increases in range

of motion for finger, wrist and elbow joints, and increased grip strength.

The second specific aim was to seek evidence of the effects of hypnosis on motor

cortex reorganization in stroke patients using functional brain imaging. The fMRI

data showed the following results during task performance by the paretic hand im-

mediately after hypnosis: increased extent of cortical activation; a lateralization shift

from contralateral toward ipsilateral control; and significant increases in the extent

of activation in bilateral sensorimotor cortex. These changes were not observed on

the non-paretic hand.

The third specific aim was to determine whether hypnosis-induced gains in motor

performance are maintained at follow up. The elevated extent of brain activity shown
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in the pre-hypnosis fMRI results indicate some retention of hypnosis effects 3-5 days

post-hypnosis. The motor performance measurements at 2-3 weeks follow up show

the retension of improvements in start delay and fall time.

Based on the case descriptions, the physical impairment that exists physically

was also found to exist during mental practice. This manifestation of the impairment

was associated with powerful negative emotions. Upon overcoming the impairment

in mental practice through hypnosis, subjects often felt elated, relieved or surprised

with themselves. Attempts at physical practice initially resulted in a return of nega-

tive emotions and the mental manifestation of physical impairment. By alternating

between mental then physical practice on the unaffected then affected extremities,

perfect mental practice with positive emotions were maintained even during impaired

physical practice. Improvements in physical performance followed improvement in

mental practice.

2.4.1 Neurophysiological Bases of Observed Results

Hypnotic regression to time periods prior to the stroke event was not found to

improve motor performance by itself. Improvements in motor performance occurred

after a process of regression to remembered wellness followed by gradual integration

into normal awareness. This integration only occurred after persistent repeated cy-

cling between a state of remembered wellness and task performance by the unaffected

then affected extremities, mentally then physically.

The hypnosis intervention was found to improve the motor performance of chronic

stroke patients who were not otherwise expected to make spontaneous improvements.
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This suggests that there is untapped potential for motor performance gains that can

be accessed through hypnosis. Overall, the results indicate that hypnosis is useful in

therapy for stroke patients.

Considering the limited scope of this pilot study, many questions remain unan-

swered about hypnosis applied to stroke recovery such as: What if the hypnosis

intervention occurred sooner after the stroke event? What mechanisms mediate the

observed effects? What is the right balance of mental and physical practice? How

important is the emotional context to the therapy? To what extent do the effects

depend on the skill of the hypnotist and hypnotizability of the subject? Further

research is required to fully answer these questions.

2.4.2 Relevance to Other Research

The results of the present study are relevant to a number of research areas. Stud-

ies of imagined movements by healthy subjects have shown that the same structures

in secondary sensory and motor cortex are activated as when the movements are per-

formed [94]. Imagined movement can also improve subsequent performance [115]. The

present study supports these findings and further suggests that hypnosis may enhance

the effects of mental practice by providing a method for overcoming impairments in

mental execution of tasks.

The notion of using prehensile movements involving the impaired limb to improve

motor function during the acute phase of stroke recovery was suggested by Johnson in

a study that found intact motor representations in hemiplegics [49]. Research on the

somatotopic organization of the sensorimotor areas in the cortex has demonstrated
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that movement parameters are stored independently from the executing extremity

and can be accessed by other extremities [81]. A possible explanation for the benefit

of alternating between imagined movement with the affected and unaffected side is

that there is some transfer of unimpaired motor programs.

The level of physical disability after stroke depends on more than just the anatom-

ical lesion. Often patients use their affected arm less because it is slow and awkward

and this negative feedback develops a pattern of learned non-use, the target of forced-

use therapy [100]. Overcoming this pattern of learned non-use may also account for

some of the effects observed in the present study. The trend in laterality observed in

the present study from contralateral toward ipsilateral dominance has been observed

in constraint-induced movement therapy [87]. It would be interesting to determine if

there are synergies between the forced use paradigm and hypnosis intervention.

The stretch reflex mechanism has been shown by Levin et al. to account for coor-

dination deficits of agonist and antagonist muscles in stroke patients [61]. Disruptions

are known to occur after stroke specifically in the recruitment and derecruitment of

muscles in the forearm [37]. The stretch reflex threshold λ is part of the equilib-

rium point hypothesis which integrates static and dynamic biomechanical properties

of muscles, reflex and central regulation of movement [7]. Levin suggests that altered

descending central nervous system (CNS) commands may be reflected in changes in

the regulation of λ leading to abnormal muscle synergies. The observed reduction

in spasticity after hypnosis may provide a means of further researching the role of

the CNS in spasticity. A finding that hypnosis effects central regulation of muscle

properties would help explain the observations in the present study of faster muscle
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contraction and relaxation rates and increased range of motion.

The role of the ipsilateral motor control in stroke recovery is well established

[13, 17, 19, 43]. Most evidence points to the interpretation that such activation con-

tributes to motor recovery by compensating for damaged regions. The increases in

ipsilateral control observed in the present study support this interpretation. It has

also been shown that attention to movement can modulate the activity in sensori-

motor areas including primary motor cortex [48]. This important role of attention

in brain activation and the attention focusing effects of hypnosis do not permit the

isolation of cortical reorganization purely related to motor learning in the present

study.

2.4.3 Limitations and Lessons Learned

The larger objective of the present study was to provide a basis for further re-

search into rehabilitation therapy with hypnosis. Extension of this pilot study would

benefit from more subjects, more imaging, more intervention sessions, better control

conditions and longer follow-up periods. Further study should also include additional

measures of factors such as the stretch reflex, range of motion and psychological

factors.

An issue that needs to be considered when interpreting the functional brain imag-

ing results is that the fMRI BOLD signal is affected by baseline cardiovascular physi-

ology. Since the hypnosis intervention changes baseline physiology, this is a potential

confound for comparissons between conditions but is not a problem for studies of lat-

erality. The physiological changes that take place during hypnosis will be examined
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in more detail in Chapter 4.

A beneficial aspect of this study was that flexibility was allowed in the hypnotic

script, especially in choosing a task for mental practice. This flexibility enabled the

selection of tasks and descriptive language that engaged positive associations. This

was important for subjects who confronted negative emotions associated with their

stroke impairments. This flexibility relied heavily on the skill of the hypnotist and

complicated the inter-subject comparisons.

Maintaining a strong positive rapport with subjects was essential to maintaining

subject enrollment and keeping subjects working even when they were not making

immediate progress. This allowed the hypnotist greater freedom to explore variations

in the hypnotic approach and find a method that worked for each subject. This

rapport is a factor that was not controlled in the present study design and could have

been considered more carefully.

Regarding the experimental design, there was a confound due to the ordering

of experimental conditions. An experimental design that randomized subjects into

experimental and control groups would avoid this confound but introduce additional

variance in the results due to inter-subject differences. The possible benefits of hypno-

sis are related to physical relaxation, increased attention and cognitive factors. These

factors cannot be separated in the current experimental design. Other control con-

ditions such as relaxation exercises, psychotherapy and hypnosis without a physical

component would have been useful.

The force following task used in the present study was chosen subject to the

constraints of fMRI logistics and experimental design. The narrow choice of tasks
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that can be performed in an MRI environment may have prevented more significant

functional differences from being quantified. The common difficulties of experiments

in the MRI environment (head motion, comfort, fatigue) are also worsened with

stroke patients. Given these considerations, fMRI is less than ideal for studying the

neurophysiology of motor function recovery after stroke. Imaging with near-infrared

spectroscopy (NIRS) may be a better option even with its lower spatial resolution and

limited depth penetration [109]. The benefits of not working in the MRI environment

include greater freedom of movement, silent operation and reduced expense. The best

choice may be to employ multi-modal imaging.

2.4.4 Further Questions

There likely exist multiple specific mechanisms by which hypnosis aids the recov-

ery of motor function after stroke. The hypnotic process used in the present study

involved physical, cognitive and emotional factors. The guiding principle throughout

the hypnosis intervention sessions was that intense focus on perfect mental execu-

tion of motor tasks would result in improved motor performance when integrated

into normal awareness. The enhanced selective attention aspect of hypnosis enabled

extraneous inputs and negative feedbacks to be ignored. Alternating between per-

fect mental execution and impaired physical execution in this focused state may

have accelerated the disinhibition of neighboring undamaged and contralesional mo-

tor pathways. Investigating this hypothesis will require functional neuroimaging of

mental and physical task execution during breakthrough moments in rehabilitation

with hypnosis.
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The observed effects of hypnosis on motor performance of stroke patients intro-

duces larger questions about the impact of nonconscious mental structures and pro-

cesses on experience, thought and action as described by Kihlstrom [54]. Research

into hypnosis has shown that events can affect mental functions even when they are

not perceived [41]. The nature and respective roles of unconscious and conscious pro-

cesses in the recovery of function after stroke remain entirely unknown. The present

research is a small step toward unlocking these inner workings of the mind.

Although questions about the nature of the unconscious and conscious mind and

their role in physical therapy are intreguing, quantitative investigations and answers

will have to wait for further advancements in functional neuroimaging. A separate

line of questioning that can be explored now is the role of the autonomic nervous

system (ANS) in neurorehabilitation with hypnosis. The observations of altered mus-

cle tone and reaction time could have resulted from a shift in the balance between

the sympathetic (stress) and parasympathetic (relaxation) branches of the ANS. An

investigation of the ANS could help to identify an important neurophysiological com-

ponent in this application of hypnosis.

The research findings presented are significant for the practical implementation of

hypnosis in stroke therapy. The simplicity and low cost of the hypnosis intervention

creates a tremendous potential for broad clinical applications. This study met its

primary goal of producing preliminary evidence of the rehabilitation effects of hyp-

nosis for stroke patients. Further study of hypnosis as a therapy for stroke patients

is certainly warranted.



Chapter 3

Real-Valued Sinusoid Frequency

Estimation

3.1 Introduction

The pilot clinical study of hypnosis-aided stroke recovery described in Chapter

2 raised many questions about the neurophysiology of hypnosis. The nature of the

physiological changes that take place during hypnosis will be explored in detail in

Chapter 4 through in studies of heart rate variability (HRV). Effects of the autonomic

nervous system generate two dominant oscillators in HRV that can be modeled as

a sum of two non-stationary sinusoids in noise. The analysis approach will be to

parameterize these HRV components and then examine correlations between HRV

and perceived hypnotic depth and changes in motor performance. Modeling HRV as

a sum of non-stationary sinusoids presents a significant signal processing challenge.

The signal processing methods used in the ensuing HRV analysis will first be explained

49



Chapter 3: Real-Valued Sinusoid Frequency Estimation 50

in this Chapter.

A sum of real-valued sinusoids can be described with the equation

x[n] = a1 sin(ω1n + φ1) + a2 sin(ω2n + φ2) + · · ·+ aK sin(ωKn + φK) + e[n] (3.1)

where n = 0, 1, 2, . . . N − 1 is a time index and K is the number of sinusoids. The

amplitudes ak, frequencies ωk and phase angles φk (k = 1, 2, ...K) are unknown model

parameters and e[n] is a noise term that is assumed to be Gaussian distributed and

white. If the noise present in a signal is not white then standard filtering methods

can be used to whiten the signal so that this model applies. The number of sinusoids

is also assumed to be known in advance. Methods are available to determine the

number of sinusoid components if the model order is unknown [31].

The primary challenge of implementing the model of equation (3.1) is estimating

the frequencies. The presence of noise in the signal will result in errors in frequency

estimates depending critically on the sample size, noise level, frequency, phase angle,

the number of sinusoid components and the proximity of multiple frequencies. Di-

rect nonlinear least squares (NLS) and maximum likelihood (ML) methods can be

used with this model to find the frequencies [9, 96, 97, 106]. These nonlinear search

methods are statistically efficient in the sense that they provide minimum-variance

unbiased frequency estimates. The central problem with directly fitting a sum of

sinusoids model is that the cost function is a highly nonlinear function of the un-

known frequencies. This problem causes the search to be computationally intensive

and sensitive to the initialization values.

Another approach is to first estimate the power spectrum of a signal with a Fourier

transform and then search for peaks corresponding to the sinusoid components. If
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only one component is present then the Fourier approach is equivalent to the maxi-

mum likelihood approach and is likewise statistically efficient. The drawback of using

the Fourier transform is that higher resolution estimation requires either longer data

records or significant zero padding which again results in high computational de-

mands. When multiple sinusoid components are present then the resolution or ability

to resolve two frequency peaks for data of length N is limited to the Fourier resolution

of 1/N in normalized frequency units.

Other methods for estimating the frequencies in the sum of sinusoids model are

based on the linear prediction (LP) property of sinusoids. LP methods are referred to

as high-resolution methods because they are not limited by the Fourier resolution. In

general, LP based methods are statistically suboptimal, do not require initialization

and are computationally more efficient than maximum likelihood. In their seminal

paper, Tufts and Kumaresan demonstrated that high-order forward-backward linear

prediction (FBLP) with rank reduction by eigendecomposition can perform nearly as

well as maximum likelihood frequency estimation [104].

LP frequency estimation is accomplished by first estimating the autoregressive

(AR) parameters, usually from an autocorrelation or covariance matrix, and then

either finding the peaks in the spectral estimate or rooting the prediction-error filter

polynomial and estimating the frequencies as the angles of the K zeros closest to the

unit circle [52].

There are many algorithms that accomplish these tasks besides the FBLP method

advocated by Tufts and Kumaresan. The algorithms differ in estimation error under

different SNR, frequency, and data length conditions. There can also be significant
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differences in the computational demands. See Kay for a comprehensive discussion

[51]. Hybrid methods involving both LP and ML estimation are also commonplace

in the literature [10,62,93].

One of the origins of LP spectral estimation is the work of Gaspard Riche, Baron

de Prony [23] published in 1795. Prony’s method was to fit a deterministic exponential

model to the data. This is in contrast with AR methods that fit a random model to

second-order statistics. He presented a method of fitting equal numbers of unknown

parameters and data points. The importance of Prony’s method is that it serves

as part of the foundation for modern LP frequency estimation that predates the

development the Yule-Walker equations and modern AR spectral estimation.

The modern version of Prony’s method derives spectral estimates or model pa-

rameters from the principle components of a covariance matrix constructed from the

data. The covariance matrix is hermitian and positive semidefinite. Although the

estimated poles are not guaranteed to lie within the unit circle, in practice this is al-

most always the case. Prony’s method is exactly equivalent to the covariance method

of AR parameter estimation although derived from different assumptions [51].

A least-squares Prony method for fitting undamped real-valued sinusoids is pre-

sented by Hildebrand [39] using a suboptimal forward-only estimate of the covariance

matrix. Hildebrand uses the Chebyshev polynomials cos(ω) rather than higher order

polynomials in eiω in the last step of solving for frequency. The use of the Chebyshev

polynomials can reduce computational demands when the data is real valued.

The complex-valued undamped-sinusoid Prony method using a modified covari-

ance matrix (a.k.a. forward-backward) has also been described [57, 66]. The use of
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the modified covariance matrix improves the accuracy of the AR parameter estima-

tion and spectral estimates. The complex-valued method can be used to find the

frequencies of real-valued sinusoids by simply doubling the model order. The real fre-

quencies then appear in reciprocal pairs. Except for differences in the derivations, the

implementation of the modified Prony method is identical to the modified covariance

method.

A method of further improving the accuracy of spectral estimation discussed by

Marple [65] is the use of eigenanalysis. There are essentially two ways that eigen-

analysis can be used to improve performance. The first is to obtain a total least

squares (TLS) estimate of the AR parameters. The TLS solution is applicable when

the number of sinusoids equals the model order. The use of TLS will remove the

bias of covariance-based estimators in the presence of white noise. The TLS Prony

or TLS modified covariance methods have desirable statistical properties of unbi-

ased estimation and minimal dependence on initial sinusoidal phase. Spectral line

splitting, another common problem with other estimators, were a single component

gives rise to two peaks has never been observed with the modified covariance method.

For these reasons, the modified covariance method is the preferred method for many

applications [51].

The second way to use eigenanalysis is to specify a model order that is greater

than the number of sinusoids. Eigenanalysis will reveal large principle components

equal in number to the sinusoids present (signal subspace) and the remainder of com-

ponents will encompass the noise (noise subspace). Depending on the algorithm, the

signal or noise subspace components are used to yield improved estimates. Superior
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performance over TLS is usually achieved with higher model orders at the price of

significantly increased computational demands and an abrupt breakdown in perfor-

mance at low SNR and small sample size.

The choice of model order for principle component eigenanalysis can be difficult

because the estimation accuracy breaks down at some point as model order is in-

creased. Tufts and Kumaresan empirically found the optimal model order to be 3/4

times the number of data points for complex-valued short data records [104]. The

signal-subspace FBLP method used by Tufts and Kumaresan is essentially equivalent

to signal-subspace rank reduction applied to the modified Prony algorithm.

If an autocorrelation matrix is used in place of the covariance or modified co-

variance matrix and the AR parameters are estimated by total least squares then

Pisarenko Harmonic Decomposition (PHD) results [78]. The advantage of the PHD

method is that a biased autocorrelation matrix has Toeplitz structure and is guar-

anteed to be positive definite with AR zeros that lie within the unit circle. The

disadvantage is that the performance of the PHD method is generally poor and exact

pole locations are not recovered even in the noise free case [51]. Higher order eige-

nanalysis of the autocorrelation matrix is however the basis of some very effective

methods such as ESPRIT [82] and MUSIC [88].

This chapter demonstrates how the modified TLS Prony method can be imple-

mented in a reduced form for real-valued sinusoids to facilitate efficient computation

and closed-form solutions for one and two sinusoid models. The reduced form pro-

duces the same unbiased frequency estimates and good statistical performance as the

standard complex-valued TLS Prony method but requires half the model order.
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An exact closed-form error analysis is derived for the single-frequency estimation

variance as a function of sample size, noise variance, sinusoid amplitude, frequency

and phase angle. The same method of error analysis could be extended to the closed-

form two-sinusoid solution. The error analysis is shown to agree well with simulations

under all conditions except when the combination of low SNR and small sample size

causes the algorithm performance to break down.

First and second order approximations to the error analysis provide compact forms

to predict performance or estimate confidence intervals on the frequency estimates. It

is also demonstrated how to greatly reduce estimation error for band-limited signals

without added computational or algorithmic complexity. The reduced form of the

modified TLS Prony method will be referred to as the Improved Prony Algorithm

(IPA).

In practice, IPA is computationally simple and robust even with short data sam-

ples and low signal-to-noise ratios (SNR). Unlike the high-order principle component

approach, IPA needs no additional user defined input parameters besides the number

of sinusoid frequencies to estimate. Furthermore, if the unknown frequency is band

limited (e.g. the output of a filter bank), IPA performance can equal the performance

of high-order methods. These practical advantages make IPA an ideal choice for many

signal processing applications.

Within the biomedical field, IPA is well suited to the analysis of heart rate vari-

ability (HRV) and fMRI time-series data where the signal components of interest are

often nonstationarity and are corrupted with significant noise. The combination of

inherently low sampling rates and nonstationarity call for moving frequency estimates
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with window sizes as small as 20 data points. When applied to a typical HRV study,

the frequency estimation algorithm may need to be called a few hundred thousand

times and in a typical fMRI study, hundreds of millions of function calls would be

typical. Choosing IPA in cases like these will reduce the number of free variables and

reduce computation time while maintaining robust estimation and fully characterized

error variance.

3.2 Background

3.2.1 The Original Prony Method

The original Prony method will be summarized only briefly, see Marple for a

detailed discussion [65]. Prony used an equal number of samples and exponential

parameters to fit a discrete exponential function to the data

h[n] = c1e
a1n + c2e

a2n + · · ·+ cKeaKn, (3.2)

where ck and ak are the unknown parameters. Clearly, 2K data points will be required

to solve for the unknowns. Furthermore, if the ak’s can be found then the ck’s could

be easily calculated by solving a linear system of equations. The problem is that the

ak’s are nonlinear terms.

Prony addressed this problem by separating the equations for ak and ck. First the

substitution was made

zk = eak (3.3)
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and equation 3.2 expressed as

h[n] = c1z
n
1 + c2z

n
2 + · · ·+ cKzn

K . (3.4)

Next, a polynomial was formed with roots zk

p(z) = (z − z1)(z − z2) · · · (z − zK), (3.5)

which can be expanded into a power series with coefficients αk

p(z) = zK + α1z
K−1 + α2z

K−2 + · · ·+ αK−1z + αK . (3.6)

Prony’s key contribution was the discovery that the αk’s are the homogeneous solution

to the linear constant-coefficient difference equation

h[K] h[K − 1] · · · h[1]

h[K + 1] h[K] · · · h[2]

...
...

. . .
...

h[2K − 1] h[2K − 2] · · · h[K]





α1

α2

...

αK


= −



h[K + 1]

h[K + 2]

...

h[2K]


. (3.7)

Once the αk’s are found using equation 3.7, the zk’s can be found as the roots of

equation 3.6 and the ak’s solved from equation 3.3. Finally, the linear coefficients ck

can be found using the original model of equation 3.2 with the first K equations or

by least squares from all 2K equations.

3.2.2 Geometric Perspective on the Single Sinusoid Model

One way to gain insight into Prony’s method and its relationship to linear predic-

tion is by exploring geometric and trigonometric interpretations of single-undamped

sinusoid frequency estimation.
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Consider the case of a sinusoid with unknown frequency ω, amplitude a and phase

φ

x(t) = a sin(ωt + φ). (3.8)

Prony’s contribution is that equation 3.8 is the solution to some linear constant-

coefficient difference equation (i.e. the right hand side of equation 3.7). Now introduce

a lag time τ and define a new variable y as a time-shifted copy of the original signal

y(t) = a sin(ω(t− τ) + φ). (3.9)

Plotting x(t) versus y(t) produces an elliptical geometry.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

α
β

)θ

Figure 3.1: The plot of x(t) verses y(t) for a single sinusoid with a frequency of
ω = 0.2π, amplitude a = 2, phase angle φ = 0 and lag time τ = 1. The phase space
map for this sinusoid is an ellipse rotated by an angle θ, with major axis α, minor
axis β and centered at the origin.

To test whether the form of x(t) verses y(t) is in fact elliptical, six arbitrary time

points can be substituted into the general quadratic form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (3.10)
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Solving for the coefficients and normalizing by A yields the following relationships

A = 1

B = −2 cos(ωτ)

C = 1

D = 0

E = 0

F = −a2

4
(4−B2).

(3.11)

Examination of equations 3.11 reveals that the ellipse is unique for 0 < ωτ < π. If

the sinusoid was a discrete time function with sampling rate h = 1/τ , then this range

goes up to the Nyquist limit of half the sampling rate. The geometry of x(t) verses

y(t), when ωτ is not a multiple of π, is also subject to the elliptic constraint

B2 − 4AC = 4 cos2(ωτ)− 4 < 0. (3.12)

If the geometry of the pseudo-phase space map in figure 3.1 holds then the fre-

quency ω and amplitude a of the sinusoid could be calculated either from the geo-

metric properties

ω =
(

α2+β2

2

) 1
2

a = 2
τ

tan−1
(

β
α

) (3.13)

or from the quadratic coefficients

ω = 1
τ

cos−1
(
−B

2

)
a = 2

( −F
4−B2

) 1
2

(3.14)
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This result suggests the following method for fitting a single sinusoid model to a

signal: Choose a lag time τ and generate x and y from the signal. Solve for the

coefficients of the general quadratic form subject to C = A, E = D = 0 and the

elliptic constraint B2 − 4AC < 0 by least squares [28]. Normalize the coefficients

by A so that the relationships in equation 3.11 are preserved. Lastly, express the

quadratic coefficients as the sinusoid model parameters with equation 3.14.

This method of frequency estimation is an example of forward quadratic (as op-

posed to linear) prediction. If there is noise present in x and y then this method

of frequency estimation is biased because the noise will propagate in nonlinear ways

in the squared terms of equation 3.10 and is not accounted for in the model. How-

ever, this example is conceptually interesting is because the coefficients [A B C] are

equivalent to the coefficients of the characteristic equation Az2 + Bz + C = 0 where

z = eiω. These roots occur in a reciprocal pair on the unit circle and are the poles of

the AR transfer function describing the sinusoid in x.

If a third time-shifted variable is introduced

z(t) = a sin(ω(t− 2τ) + φ) (3.15)

and a pseudo-phase space map is produced by plotting x verses y verses z, then its

geometry will be the intersection of an elliptical cylinder with axis normal to the xy

plane and an identical elliptical cylinder with axis normal to the yz plane as shown

in figure 3.2. All the points of intersection between these two identical elliptical

cylinders lie in a plane that passes through the origin. The equation of this plane

can be obtained by finding the coordinates of two points in the xy-plane ellipse and

the two mirrored points in the yz-plane ellipse and then finding the z coordinates
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where these lines intersect. Using these two points in x, y and z to define the plane

produces the following equation in terms of the same quadratic coefficients defined in

equation 3.11

Ax + By + Cz = 0. (3.16)

−2
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Figure 3.2: The plot of x(t) verses y(t) verses z(t) for a single sinusoid with a frequency
of ω = 0.2π, amplitude a = 2, phase angle φ = 0 and lag time τ = 1. The phase
space map shown is black is the intersection of the cylinder formed by the ellipse in
the xy plane (blue) with a cylinder from the ellipse in the yz plane (red).

3.2.3 The Modified Prony Method

The resulting plane equation of equation 3.16 can be described as a forward linear

prediction equation about with the relationship A = C constraining the oscillator to

be undamped. If the time-shifted sinusoid data x(t), y(t) and z(t) defined in equations

3.8, 3.9 and 3.15 respectively are discretely sampled with period τ forming the vectors

x[n], y[n] and z[n] and the vector lengths are trimmed by two points so the lengths
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are the same after the time lags are introduced, then

cov(x, y, z) = [ x y z ]T [ x y z ] (3.17)

is a covariance matrix. (If zero padding is used instead of trimming then a biased

autocorrelation matrix results.) The Prony method described by Hildebrand [39] can

be used to solve for B by least squares with the constraint that A = C = 1 and

B̂ = −(yTy)−1yT (x + z). (3.18)

This is equivalent to finding the homogeneous solution to the covariance matrix of

equation 3.17 
xTx xTy xTz

xTy yTy yTz

xTz yTz zTz




A

B

C

 = 0 (3.19)

with the A = C = 1 constraint.

Rather than next solve for frequency using the characteristic equation in z, Hilde-

brand then uses the restriction to real valued sinusoids to write a characteristic equa-

tion whose roots r occur at cos(ωτ). This real-valued characteristic equation has

coefficients that are functions of A and B and the Chebyshev polynomials. For the

single sinusoid case, this equation is simply

Ar +
B

2
= 0. (3.20)

The root of equation 3.20 is equivalent to the solution in equation 3.14.
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3.2.4 Total Least Squares Modified Prony Method

The Prony method of frequency estimation described by Hildebrand will also

produce a biased result in the presence of noise because the least squares fit will

only account for error in y. Another approach is to combine forward and backward

estimates into a modified covariance matrix

covmodified(x,y, z) =

 x y z

z y x


T  x y z

z y x

 (3.21)

and find the homogeneous solution constrained by A = 1
xTx + zTz xTy + yTz 2xTz

xTy + yTz 2yTy xTy + yTz

2xTz xTy + yTz xTx + zTz




A

B

C

 = 0. (3.22)

Without constraining C this method can produce complex frequency results. How-

ever, the real part of the solution is still a reasonable estimate of the undamped

frequency.

The unbiased solution is obtained and significant improvement is realized if a

total least squares (TLS) method is used to solve equation 3.22 [79]. This can be

implemented by finding the eigenvector associated with the smallest eigenvalue of the

modified covariance matrix. The A = C constraint is automatically implemented

by virtue of the symmetry in the modified covariance matrix. This is equivalent to

implementing the noise compensation technique

[
covmodified(x,y, z)− σ2I

]


A

B

C

 = 0 (3.23)
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where the noise variance σ2 is estimated by the smallest eigenvalue of covmodified and

I is a 3 by 3 identity matrix. This is the TLS Prony Method or equivalently the TLS

Modified Covariance Method.

3.3 The Improved Prony Method for Single Sinu-

soid Frequency Estimation

The proposed reformulation of the TLS Modified Prony Method for real-valued

sinusoids is to implement the A = C constraint by combining x and z prior to forming

the covariance matrix

cov(x + z,y) =

 (x + z)T (x + z) yT (x + z)

yT (x + z) yTy

 (3.24)

and then solve for the homogeneous solution using eigenanalysis

cov(x + z,y)

 A

B

 = 0. (3.25)

The TLS solution to equation 3.25 is no longer the eigenvector associated with the

smallest eigenvalue of cov(x + z,y). To understand why, consider the case where

x, y and z are pure Gaussian white noise with variance σ2. The variance of the

quantity x + z would be 2σ2 whereas the variance of y would be just σ2. This

difference in variance will bias the direction of the eigenvector associated with the

largest eigenvalue of cov(x + z,y) in the direction of x + z.

An easy way to correct for this bias is to multiply y by
√

2 prior to performing

the eigendecomposition and then correct the eigenvector associated with the smallest
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eigenvalue by multiplying the second term by
√

2. This is equivalent to performing a

generalized eigendecomposition of cov(x + z,y) and a matrix with the noise variance

weights [2 1] on the principle diagonal.

When formulated in this way, the closed form solution is easy to express. Begin

by defining the matrix

G = cov(x + z,
√

2y) =

 (x + z)T (x + z)
√

2yT (x + z)

√
2yT (x + z) 2yTy

 . (3.26)

Form the characteristic equation

det(G− λI) = 0 (3.27)

where I is an identity matrix and λ is an eigenvalue of G. The smallest eigenvalue of

the characteristic equation 3.27 is

λ0 =
1

2

(
G1,1 + G2,2 − (G2

1,1 − 2G1,1G2,2 + G2
2,2 + 4G2

1,2)
1
2

)
(3.28)

where G1,2 = G2,1. Its associated eigenvector corrected with the
√

2 factor is

v =

 (λ0 −G2,2)

√
2G1,2

 . (3.29)

If the eigenvector of equation 3.29 is expressed as v = [v1 v2 v1]
T then it is identical

to the eigenvector associated with the smallest eigenvector from the standard TLS

modified Prony method of equation 3.22.

Using the Chebyshev polynomials instead of the standard characteristic equation

reduces the polynomial order for the root finding to simply

r1 = − v2

2v1

(3.30)
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and the associated frequency is

ω̂ =
1

τ
cos−1(r1). (3.31)

Alternatively, the solution for frequency can be written directly from G as

ω̂ =
1

τ
cos−1

( √
2G1,2

G2,2 −G1,1 + (G2
1,1 − 2G1,1G2,2 + G2

2,2 + 4G2
1,2)

1
2

)
. (3.32)

As is the case with all the Prony methods, the minimum number of data points

necessary is equal to the number of unknown parameters (3 data points in this case).

3.3.1 Expected Value and Bias

Now consider the case of a single discretely sampled sinusoid x[n] with amplitude

a, frequency ω and phase angle φ that is corrupted with additive Gaussian white

noise e[k] with variance σ2

x[n] = a cos(ωn + φ) + e[n]. (3.33)

If the time index n = 0, 1, 2, . . . , N − 1 and the frequency range is 0 < ω < π then all

frequencies up to the Nyquist limit are represented. Note that in this case the cosine

is used for convenience because the real-valued characteristic equation has roots that

are cosines.

The elements of G will be normalized for convenience. This normalization has no

effect on the homogeneous solution but does simplify the analysis of variance.

G1,1 =
1

M

M−1∑
n=0

(x[n] + x[n + 2])2 (3.34)

G1,2 =

√
2

M

M−1∑
n=0

(x[n] + x[n + 2])(x[n + 1]) (3.35)
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G2,2 =
2

M

M−1∑
n=0

(x[n + 1])2 (3.36)

where

M = N − 2 (3.37)

is the length of the summation. Adopting the notation ci = cos(ω(n + i) + φ) and

ei = e[n + i] then expanding the G elements yields

G1,1 =
1

M

M−1∑
n=0

(
a2(c2

0 + 2c0c2 + c2
2) + 2a(c0e0 + c0e2 + c2e0 + c2e2) + (e0 + e2)

2
)

(3.38)

G1,2 =

√
2

M

M−1∑
n=0

(
a2(c1c2 + c1c0) + a(c1e0 + c1e2 + e1c0 + e1c2) + e1e0 + e1e2

)
(3.39)

G2,2 =
2

M

M−1∑
n=0

(
a2c2

1 + 2ac1e1 + e2
1

)
. (3.40)

The expected value of the G will clearly involve the mean of discretely-sampled cosine

products. In the limit for large M , the mean value of a squared cosine is 1/2. This

approximation breaks down for small values of M and when frequency ω is the near

0 or π. Fortunately, the exact mean of a discrete squared cosine can be expressed in

closed form

1

M

M−1∑
n=0

c2
0 =

1

4M

(
2M +

sin(2Mω − ω + 2φ)

sin(ω)
+ cos(2φ)− sin(2φ) cot(ω)

)
, (3.41)

as can the mean of the product of a sine and cosine

1

M

M−1∑
n=0

c0s0 =
1

4M

(
−cos(2Mω − ω + 2φ)

sin(ω)
+ sin(2φ) + cos(2φ) cot(ω)

)
, (3.42)

where s0 = sin(ωn + φ). By combining equations 3.41 and 3.42 with the appropriate

identities, it is possible to express the closed form mean of the product of two cosines
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with different phase terms as

1

M

M−1∑
n=0

cicj =
1

4M sin(ω)
[M sin(ω + φi − φj) (3.43)

+ M sin(ω − φi + φj) + sin(2Mω − ω + φi + φj) + sin(ω − φi − φj)] ,

with the substitution ci = cos(ωn + φi) where φi = φ + ωi. Equation 3.43 will be

referred to as the function f(ω, φi, φj, M) with the short hand notation f ij
M .

The exact expected values of G can now be expressed in closed form as

〈G1,1〉 = a2(f 00
M + 2f 02

M + f 22
M ) + 2σ2, (3.44)

〈G1,2〉 =
√

2a2(f 01
M + f 12

M ) (3.45)

and

〈G2,2〉 = 2a2f 11
M + 2σ2. (3.46)

Substituting equations 3.44, 3.45 and 3.46 into the closed form frequency estimator

of equation 3.32 and simplifying shows that the IPA frequency estimator is unbiased

as a function of frequency, phase and sample size with additive Gaussian white noise.

This is not a surprising result considering that this formulation equivalent to the TLS

modified Prony method. The expected values are however required for the analysis

of variance that follows.

3.3.2 Variance and the Cramer-Rao Lower Bound

The benchmark for estimation of any quantity is the theoretical minimum-variance

unbiased (MVU) estimator. The Cramer-Rao Lower Bound (CRLB) describes the

variance of the theoretical MVU estimator without specifying the actual form of the
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estimator. See Kay [51] for a detailed discussion. The CRLB states

var(ω̂) ≥ −
〈

∂2 ln p(x; ω)

∂ω2

〉−1

(3.47)

where p(x; ω) is the likelihood function of ω for a given x and the angle brackets

indicate expected value. Conceptually, equation 3.47 states that the variance in the

estimator is an inverse function of the curvature of the likelihood function at its peak.

The likelihood function for frequency estimation of the sinusoid x[n] is

p(x; ω) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2

N−1∑
n=0

[x[n]− a cos(ωn + φ)]2
)

(3.48)

Substituting equation 3.48 into equation 3.47 and solving for the CRLB for single

frequency estimation yields

CRLB(ω̂) =
σ2

a2
∑N−1

n=0 n2 sin2(ωn + φ)
. (3.49)

When the amplitude and phase are unknown and when frequencies are not near the

limits of the range, the CRLB can be approximated as

CRLB(ω̂) ≈ 12σ2

a2N(N − 1)(2N − 1)
. (3.50)

From equation 3.50, it is clear that the CRLB is inversely proportional to SNR and

inversely proportional to sample size to the third power.

If the variances and covariances the elements of G are known and derivatives of

ω̂ are taken, then the variance in the estimated frequency can be calculated as

var(ω̂) = var(G1,1)

(
∂ω̂

∂G1,1

)2

+ var(G1,2)

(
∂ω̂

∂G1,2

)2

(3.51)

+ var(G2,2)

(
∂ω̂

∂G2,2

)2

+ cov(G1,1, G1,2)

(
∂ω̂

∂G1,1

)(
∂ω̂

∂G1,2

)
+ cov(G1,1, G2,2)

(
∂ω̂

∂G1,1

)(
∂ω̂

∂G2,2

)
+ cov(G1,2, G2,2)

(
∂ω̂

∂G1,2

)(
∂ω̂

∂G2,2

)
.
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This approach is in fact feasible. The variances of each element of G in terms of the

mean of squared cosines function f ij
M defined with equation 3.43 are

var(G1,1) = 4a2σ2
[
(2f 00

M + 2f 22
M + 4f 02

M )M (3.52)

+2(f 02
M−2 + f 04

M−2 + f 22
M−2 + f 24

M−2)(M − 2)
]
/M2

+
[
8σ4M + 4σ4(M − 1)

]
/M2,

var(G1,2) = 2a2σ2
[
(2f 11

M + f 00
M + f 22

M + 2f 02
M )M (3.53)

+2(f 02
M−1 + f 22

M−1 + f 11
M−1 + f 13

M−1)(M − 1) + 2f 13
M−2(M − 2)

]
/M2

+
[
4σ4M + 4σ4(M − 1)

]
/M2

and

var(G2,2) =
1

M
(16a2σ2f 11

M + 8σ4). (3.54)

The covariances can be similarly expressed as

cov(G1,1, G1,2) = 2
√

2a2σ2
[
(2f 01

M + 2f 12
M )M (3.55)

+ (2f 01
M−1 + 2f 03

M−1 + 2f 12
M−1 + 2f 23

M−1)(M − 1)

+(f 12
M−2 + f 23

M−2 + f 03
M−2 + f 14

M−2)(M − 2)
]
/M2,

cov(G1,1, G2,2) =
[
8a2σ2(f 11

M−1 + f 02
M−1 + f 13

M−1 + f 22
M−1) + 8σ4

]
(M − 1)/M2 (3.56)

and

cov(G1,2, G2,2) = 4
√

2a2σ2
[
(f 01

M + f 12
M )M + 2f 12

M−1(M − 1)
]
/M2. (3.57)

The derivatives of ω̂ with respect to the G are easily calculated from equation 3.32

as

∂ω̂

∂G1,1

=
−
√

2G1,2

H(G2
1,1 − 2G1,1G2,2 + G2

2,2 − 2G1,1H + 2G2,2D + H2 − 2G2
1,2)

1
2

, (3.58)
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∂ω̂

∂G1,2

=
√

2
4G2

1,2 −H(G2,2 −G1,1 + D)

H(G2,2 −G1,1 + H)2(1− 2G2
1,2/(G2,2 −G1,1 + H)2)

1
2

(3.59)

and

∂ω̂

∂G2,2

= − ∂ω̂

∂G1,1

, (3.60)

where

H =
(
(G1,1 −G2,2)

2 + 4G2
1,2

) 1
2 . (3.61)

The exact variance in ω̂ as a function of amplitude a, frequency ω, phase φ and

sample size N (or M = N−2) can now be calculated by substituting the variance and

covariance expressions for G into equation 3.51 and evaluating the derivative expres-

sions with the expected value equations 3.44, 3.45 and 3.46. The resulting expression

for var(ω̂) does not readily led itself to simplification but it does exactly characterize

the performance of IPA frequency estimation up to a point when a combination of

very small sample size and low SNR cause the AR poles to occasionally fall outside

the unit circle resulting in imaginary frequencies. This analysis does not account for

the possibility of imaginary frequencies and gracefully loses its consistency under this

scenario.

If a more manageable expression for the frequency estimation variance is desired

then the mean of the product of two cosines in equation 3.43 can be approximated as

1

M

M−1∑
n=0

cicj ≈
1

2
cos(φi − φj) = gij

M . (3.62)

Equation 3.62 is a good approximation when M is large and when frequency ω is not

near the range limits. Substituting gij
M for f ij

M in the expressions for expected value,

variance and covariance, simplifying and substituting into equation 3.51 produces this

far more compact result in terms of the amplitude a, frequency ω, noise variance σ2
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and sample size N

var(ω̂) ≈ 2σ2

a4(N − 2)2

[
(4a2 + 8σ2N − 20σ2)c4

ω (3.63)

+ (4a2 − 6σ2N + 20σ2)c2
ω + a2 + 2σ2N − 5σ2

]
/
[
−4c6

ω + 3c2
ω + 1

]
where cω = cos(ω). Evaluating this variance expression for ω = π/2 has a simple

form and is near the minimum variance under most conditions

var(ω̂) ≈ 2σ4(a2/σ2 + 2N − 5)

a4(N − 2)2
. (3.64)

If instead, equation 3.63 is further approximated for large values of N by removing

those terms in the numerator that tend to zero then

var(ω̂) ≈ 4σ4(4c4
ω − 3c2

ω + 1)

a4(N − 4)(−4c6
ω + 3c2

ω + 1)
. (3.65)

Equation 3.65 is interestingly the same form as the asymptotic variance estimate nor-

mally reported for Pisarenko Harmonic Decomposition (PHD) estimation of a single

frequency [26,84]. However, the same authors note that equation 3.65 is inconsistent

for characterizing PHD when N is small or SNR is high. An exact analysis of PHD is

shown by Chan and So [14]. It will be demonstrated with simulations that the exact

analysis and the approximation of equation 3.63 is consistent with IPA performance

whereas equation 3.65 is inconsistent.

3.3.3 Improving Performance for Band Limited Signals

Thus far it has been assumed a single unknown frequency to be estimated by the

Improved Prony Algorithm lies in the range from 0 to half the sampling rate h/2,

which is the limit for a discrete real-valued signal. If however, due to some a priori



Chapter 3: Real-Valued Sinusoid Frequency Estimation 73

information, the unknown frequency could only exist in the range from 0 to h/4, it is

possible to double the time lag used to calculate the covariance matrix G of equation

3.26 while still using all the data points.

Doubling the lag time in the covariance while maintaining the same first order

model will effectively double the number of data points used to estimate the unknown

frequency in the range of 0 to h/4. The benefit of doubling N in equation 3.63 is

a reduction in the variance of ω̂ by a factor of 4. The cost is the frequencies in the

range from h/4 to h/2 will be aliased to the lower range, hence the need for a priori

information. This same method of variance reduction could in fact be applied to

find a frequency that is limited to the higher range from h/4 to h/2 if the aliasing is

assumed to occur.

Common examples of when this sort of a priori information is available are when

the signal is the output of a filter bank or if the sampling rate is higher than signal

bandwidth due to low pass filtering or interpolation. As an alternative to using a

priori information, a second estimation could be performed using triple the lag time

to calculate the covariance matrix G resulting in aliasing that divides the 0 to h/2

frequency range into three regions. A comparison of the two aliased solutions from the

first estimate and the three aliased solutions from the second estimate should result

in only one common frequency estimates. This common estimate is the unaliased

solution.

To consider this process more formally, an integer variable τ will indicate the

step size through the data, or equivalently, the number of aliasing harmonics in the

frequency estimate. A value of τ > 1 will produce aliasing. The elements of G will
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be redefined as

G1,1 =
1

M

M−1∑
n=0

(x[n] + x[n + 2τ ])2 (3.66)

G1,2 =

√
2

M

M−1∑
n=0

(x[n] + x[n + 2τ ])(x[n + τ ]) (3.67)

G2,2 =
2

M

M−1∑
n=0

(x[n + τ ])2 (3.68)

where M = N − 2τ . Frequencies estimated using equation 3.32 must also be rescaled

by a factor of 1/τ and the variance of equation 3.51 correspondingly rescaled by 1/τ 2.

The resulting expression for approximate estimated frequency variance is then

var(ω̂) ≈ 2σ2

a4(Nτ − 2τ 2)2

[
(4a2τ + 8σ2N − 20σ2τ)c4

ωτ (3.69)

+ (4a2τ − 6σ2N + 20σ2τ)c2
ωτ + a2τ + 2σ2N − 5σ2τ

]
/
[
−4c6

ωτ + 3c2
ωτ + 1

]
where cωτ = cos(ωτ). The variance now tends to infinity at multiples of ωτ rather

than ω as is the case when τ = 1. The reduction in estimation variance is easier to

see when equation 3.69 is evaluated at ωτ = π/2

ˆvar(ω) ≈ 2σ4(a2/σ2τ + 2N − 5τ)

a4τ 2(N − 2τ)2
. (3.70)

If the number of data points N is large relative to τ , the variance in ω̂ converges to

an improvement by a factor of 1/τ 2. For smaller samples there is a trade off between

N and τ . The optimum value of τ for any a priori band limited frequency range and

sample size can be calculated by minimizing equation 3.69.

If instead, a signal is not band limited and multiple harmonic estimates are used

to resolve the aliasing, then selection of the best harmonic requires estimating the

variance in ω̂ without any advance knowledge of the noise variance σ2 or the sinusoid
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amplitude a. These quantities can be estimated from the two eigenvalues of G as

σ2 ≈ λ0/2 (3.71)

a2 ≈ −(λ0 − λ1)/(1 + 2 cos2(ωτ)).

Substituting equations 3.71 into equation 3.69, along with r = cos(ωτ), results in the

following expression for estimating the variance in a frequency estimate

̂var(ω̂) ≈ λ0(4r
4(2λ0N − λ0τ) + 2r2(2τ(λ0 + λ1)− 3λ0N) + 2τλ1 + λ0(2N − 3τ))

2N2(1− r2)(λ0 − λ1)2
.

(3.72)

Estimation of var(ω̂) with equation 3.72 is most effective when the sample size is

large. With small sample sizes it is typically more effective to estimate the signal

amplitude and noise variance by other means and then use approximate values in

equation 3.69.

3.4 Generalizing the Improved Prony Algorithm

The procedure for estimating the frequencies of K summed sinusoids in additive

Gaussian white noise will now be summarized. Start with time series data x[n]

x[n] = a1 cos(ω1n + φ1) + a2 cos(ω2n + φ2) + · · ·+ aK cos(ωKn + φK) + e[n] (3.73)

defined in the same manner as equation 3.1 where n = 0, 1, . . . , N − 1 and K is the

number of sinusoids with unknown frequency.
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3.4.1 Forming the Difference Equation Matrix

A matrix X is constructed with N − 2Kτ rows that define the linear difference

equations that will be used to solve for frequency

X[n] =

[
x[n] + x[n + 2Kτ ] x[n + τ ] + x[n + τ(2K − 1)] . . . x[n + Kτ ]

]
,

(3.74)

where τ is the harmonic number.

Prony’s method states that the homogeneous solution to these difference equations

specify the coefficients of a degree 2K polynomial in eiωτ . Since the data is assumed

to be real valued, the degree 2K polynomial in eiωτ may be rewritten in terms of

cos(Kωτ) and solved using the Chebyshev polynomials. The homogeneous solution

to equation 3.74 will be first be found by total least squares.

3.4.2 Calculating the Total Least Squares Homogeneous So-

lution

The modified covariance matrix G is formed from the difference equations in X

and the
√

2 bias correction factor in the last row and column

G =
1

M



∑
X2

n,1

∑
Xn,1Xn,2 . . .

√
2
∑

Xn,1Xn,K+1∑
Xn,1Xn,2

∑
X2

n,2 . . .
√

2
∑

Xn,2Xn,K+1

...
...

. . .
...

√
2
∑

Xn,1Xn,K+1

√
2
∑

Xn,2Xn,K+1 . . . 2
∑

X2
n,K+1


, (3.75)

where M = N −2Kτ and the summation limits are all from n = 0 to M −1. Since G

is a symmetric matrix, only the upper or lower triangular part needs to be calculated.
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Next the smallest eigenvalue λ0 is calculated along with its corresponding eigen-

vector v by standard eigendecomposition. The last element of v is multiplied by the

√
2 bias correction factor and then v is normalized by the corrected last element.

v =
1√

2vλ0 [K + 1]

[
vλ0 [1] vλ0 [2] . . . vλ0 [K]

√
2vλ0 [K + 1]

]T

(3.76)

where vλ0 is the eigenvector associated with λ0. The resulting vector v is the TLS

homogeneous solution to X.

3.4.3 Solve for the Frequencies with the Chebyshev Polyno-

mials

The Chebyshev polynomials are a set of orthogonal polynomials that are formed

by expressing cos(kθ) as a polynomial in cos(θ) as [39]

cos(kθ) = Tk(cos(θ)). (3.77)

The first few expressions for Tk are

T0(r) = 1 T1(r) = r

T2(r) = 2r2 − 1 T3(r) = 4r3 − 3r

T4(r) = 8r4 − 8r2 + 1 T5(r) = 16r5 − 20r3 + 5r

(3.78)

with additional expressions determined with the recurrence formula

Tk+1(r) = 2rTk(r)− Tk−1(r) (k ≥ 1). (3.79)

From Prony’s method, the homogeneous solution v and any of the K unknown

frequencies will satisfy the following expression

2 cos(Kωkτ)v1 + 2 cos((K − 1)ωkτ)v2 + . . . + 2 cos(ωkτ)vK + vK+1 = 0. (3.80)
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Equation 3.80 can be reformulated in terms of r = cos(ωτ) by applying the Chebyshev

polynomials

2TK(r)v1 + 2TK−1(r)v2 + . . . + 2T1(r)vK + vK+1 = 0. (3.81)

The estimated frequencies are then expressed in terms of the polynomial roots

ω̂k = cos−1(rk). (3.82)

3.4.4 Closed form Solution for Two Sinusoids

The compact formulation of the Improved Prony Algorithm facilitates the expres-

sion of a closed form solution to the two frequency estimation case. This is useful to

reduce computation time and also makes it possible to perform an exact analysis of

variance as was already performed with the single sinusoid case.

First the modified covariance matrix G is formed from equation 3.75 with K = 2.

The procedure for finding the smallest eigenvalue begins by finding the coefficients of

the characteristic equation for G

c1λ
3 + c2λ

2 + c3λ + c4 = 0 (3.83)

with the following coefficients

c =



1

−G1,1 −G2,2 −G3,3

+G1,1G2,2 + G1,1G3,3 + G2,2G3,3 −G2
1,2 −G2

1,3 −G2
2,3

−G1,1G2,2G3,3 − 2G1,2G1,3G2,3 + G1,1G
2
2,3 + G2,2G

2
1,3 + G3,3G

2
1,2


. (3.84)
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The smallest eigenvalue can found using the cubic formula. First the following sub-

stitutions are made

Q = (3c3 − c2
2)/9 (3.85)

R = (9c2c3 − 27c4 − 2c3
2)/54

S = (R +
√

Q3 + R2)
1
3

T = (R−
√

Q3 + R2)
1
3 .

The smallest eigenvalue is then compactly expressed as

λ0 = −c2/3− (S + T )/2 + i
√

3(S − T )/2. (3.86)

The eigenvector associated with the smallest eigenvalue corrected for the
√

2 scaling

is

v =


−λ2

0 + (G2,2 + G3,3)λ0 −G2,2G3,3 + G2
2,3

G1,2G3,3 −G1,3G2,3 −G1,2λ0

√
2(G1,3G2,2 −G2,3G1,2 −G1,3λ0)

 . (3.87)

The equation determining the two frequencies is now constructed using v and the

Chebyshev polynomials

2(2r2 − 1)v1 + 2rv2 + v3 = 0, (3.88)

where the estimated frequencies are the inverse cosines of the roots

ω̂1 = cos−1

(
v2 + (v2

2 − 4v1v3 + 8v2
1)

1
2

4v1

)
(3.89)

ω̂2 = cos−1

(
v2 − (v2

2 − 4v1v3 + 8v2
1)

1
2

4v1

)
.
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3.4.5 Common Extensions

There are a number of extensions to the Improved Prony Algorithm that are

required for many applications. These extensions are addressed here to facilitate the

algorithm’s practical implementation.

Correcting Complex or Imaginary Estimation Results

When a frequency estimate contains a non-zero imaginary part, that indicates

that the data is best fit in part by a hyperbolic cosine rather than any pure un-

damped sinusoid. The real part of the frequency estimate, however, still represents

the undamped component and is a reasonable estimate of the undamped frequency.

Estimating frequency from a longer data record or using the harmonic estimation

technique will reduce the occurrences of this break down of the undamped model.

Estimating Noise Variance

It was already stated in equation 3.71 that the noise variance can be estimated

from the smallest eigenvalue λ0 of the modified covariance matrix G for the single

sinusoid case. In fact, this result holds for K sinusoids as long as only one eigenvalue

is used to compensate for the noise. This is always the case with IPA and so the

estimated noise variance is simply

σ̂2 = λ0/2. (3.90)



Chapter 3: Real-Valued Sinusoid Frequency Estimation 81

Least-Squares Estimates of Amplitude and Phase Angle

Once the frequency is known, the amplitude and phase angle can be found by the

least squares fit of sine and cosine components in the time domain

[
sin(ωn) cos(ωn)

] U

V

 = x[n] (3.91)

a =
√

U2 + V 2 (3.92)

φ = tan−1

(
V

U

)
. (3.93)

This can be extended to multiple sinusoids by simply adding additional sines and

cosines of the relevant frequencies and additional coefficients.

Removing a Constant Offset

A constant offset in a sample of data must be removed prior to performing the

TLS eigendecomposition for the estimates to be unbiased. The bias introduced by the

offset will be toward a frequency of zero. There many ways to remove the constant

offset. The easiest is to subtract the mean of the data sample. This is effective if the

sample is long relative to the period of the lowest frequency in the data. If the data

sample is short relative to the frequency period then it is better to remove the bias

from the difference equation matrix X instead of the original data x.

The procedure is to first project X into the zero frequency direction then calculate

the mean. This mean is then subtracted from the column of X and the analysis

proceeds as before. The zero frequency direction is

s|ω=0 =

[
2 2 . . . 1

]T

. (3.94)



Chapter 3: Real-Valued Sinusoid Frequency Estimation 82

Windowing for Time-Frequency Analysis

When performing time-frequency analysis, it is desirable to use a window function

that is centrally weighted (such as a Hanning window) so that estimates vary more

smoothly in time. The window function cannot be applied directly to a data sample

because that will alter the frequency content and introduce bias in the estimates. The

way to window the data without introducing bias is by multiplying the columns of

the matrix X by a window function that is of length M = N − 2T . This step weights

different regions in time differently in the TLS estimation of frequency.

Directly Recovering the Sinusoid Components

Once the frequencies are found then it may be desirable to separate the data into

its sinusoid components. This can be accomplished by projecting X in the directions

of the frequency components. Each frequency can be represented by a vector in

X-space as

s(ωτ) =

[
2 cos(Kωτ) 2 cos((K − 1)ωτ) . . . 2 cos(ωτ) 1

]T

. (3.95)

The matrix X can be projected onto the sinusoid component basis as

S = X(

[
s1 s2 . . . sK v

]T

)−1. (3.96)

The first K columns of S are the recovered sinusoid components of x and the K + 1

column of S is the residual. Power for each component can be estimated directly

from these components.
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3.5 Numerical Simulations

A series of numerical simulations follow to support the analysis presented in the

earlier sections. Although in general, simulations are inherently limited in scope to

the specific testing conditions, an attempt has been made to select conditions that

illustrate the most salient features of the Improved Prony Algorithm.

3.5.1 Expected Value and Variance of the Modified Covari-

ance Matrix

Expressions were presented in sections 3.3.1 and 3.3.2 for the expected values,

variances and covariances between all the elements of the modified covariance matrix

G for the one sinusoid model.

These expressions were compared with simulation under the following conditions:

The number of data points was chosen as N = 11 which corresponds to a difference

equation matrix X length of M = 8. This short length was chosen so that the

effects of initial phase angle could be seen in the results. The sinusoid amplitude

was a = 2 and the Gaussian distributed white noise variance was σ2 = 1 resulting

in an SNR of approximately 3 dB. This very low SNR condition illustrates that the

model is consistent under these circumstances. The initial phase angle was selected

as φ = 3π/8 to cause asymmetry in the phase effects. The normalized frequency

range tested was 0.01 < f < 0.49 in increments of 0.01 where f = 0.5 was equivalent

to half the sampling rate. A total of 1000 independent trials were conducted at each

frequency increment. The result is shown in figure 3.3.
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Figure 3.3: Comparison of calculated and simulated expected value and variance of
the elements of the covariance matrix G with M = 8, a = 2, σ2 = 1 (SNR ≈ 3 dB),
φ = 3π/8, 0.01 < f < 0.49 in increments of 0.01 and 1000 trials per frequency.
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Good agreement with simulation was found under these conditions. The expected

value simulations converge more rapidly to the model when compared to the variance

simulations because a sample mean is a first order statistic whereas sample variance

is second order. The small, high-frequency deviations from the model result from the

randomness in the simulation. If a larger number of independent trials was used then

these deviations would converge to zero. Similar consistency is found for large sample

sizes, high SNR and any phase angle or frequency.

3.5.2 Variance in Estimated Frequency and Its Approxima-

tions

The expected values and variances illustrated in figure 3.3 were next used in

section 3.3.2 to express the variance in single sinusoid frequency estimates. Three

approximations of this exact analysis were also given in equations 3.63, 3.64 and 3.65.

The simulation for frequency variance was conducted with a data sample size

of N = 24 points. The sinusoid amplitude was a = 1 and the noise variance was

σ2 = 0.01 resulting in an SNR of 20 dB. The initial phase angle was φ = 0, normalized

frequency ranged 0.01 < f < 0.49 in 100 steps with 1000 trials per frequency. Mean

squared error was used to approximate variance in the simulations. Results are shown

in figure 3.4.

The calculated variance in estimated frequency agrees well with the simulation.

The first approximation of equation 3.63 captures the general behavior of the simula-

tion without the higher frequency initial phase angle effects. The second approxima-

tion of equation 3.64 is simply the first approximation evaluated midway through the
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Figure 3.4: Comparison of simulated variance in frequency estimates with calculations
and the approximations of equations 3.63, 3.64 and 3.65 respectively. N = 24, SNR
was 20, φ = 0, 0.01 < f < 0.49 in 100 steps, 1000 trials per frequency. The Cramer-
Rao Lower Bound is included for reference.
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full frequency range. It provides an easy way to estimate the best-case variance under

the given conditions. The third approximation of equation 3.65 is inconsistent with

the simulation unless the sample size is much larger. This third approximation is the

same form as the approximation proposed in the literature for Pisarenko Harmonic

Decomposition but is also inconsistent with that model as discussed earlier in section

3.3.2.

The general performance of the Improved Prony Algorithm can also be viewed in

relation to the Cramer-Rao Lower Bound (CRLB) also shown in figure 3.4. Under

these conditions IPA is at best about 12 dB from the CRLB and diverges further

from the bound near the frequency limits.

3.5.3 Improved Performance with Resolved Aliasing

A method for reducing the variance in estimated frequencies by purposefully ob-

taining aliased frequency estimates that can be resolved by multiple harmonic esti-

mates or a priori information was presented in section 3.3.3. Step sizes of τ = 2 and

τ = 3 were used to generate the two and three harmonic IPA frequency estimates.

For the purposes of the simulation, it was assumed that a priori information was used

to resolve the aliasing. The conditions for the simulation were otherwise the same as

the simulation in figure 3.4.

The calculated variance and first approximation agree well with the simulations

for the second and third harmonic IPA. The minimum variance achieved by the two

harmonic IPA is significantly improved from the standard non-aliased case in figure

3.4. The third harmonic minimum variance is within about 7 dB of the CRLB. It



Chapter 3: Real-Valued Sinusoid Frequency Estimation 88

0 0.1 0.2 0.3 0.4 0.5
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

Normalized Frequency

V
ar

ia
nc

e 
(d

B
)

(a) 2nd Harmonic
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(b) 3rd Harmonic

Figure 3.5: Comparison of simulated variance in frequency estimates with calculations
and a first approximation. Time steps of τ = 2 and τ = 3 were used to generate the
2nd and 3rd aliased harmonics of the Improved Prony Algorithm. It was assumed
that aliased frequencies could be resolved by a priori information. The simulation
conditions were otherwise the same as those for figure 3.4
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is important to emphasize that these are still first order models that were solved in

closed form using equation 3.32.

3.5.4 Comparison with Other Methods

The performance of the single sinusoid closed form frequency estimator was com-

pared with other methods in simulations. These comparisons are merely illustrative

because the appropriate choice of a frequency estimation algorithm depends on the

practical needs of the specific application. The Improved Prony Algorithm is also

simply a reformulation of the TLS Modified Prony method or equivalently, the TLS

Modified Covariance method and the results will be identical to these other methods.

The simulation conditions were the same as those used for figure 3.4. The first

method chosen for comparison was the closed-form first-order solution to Pisarenko’s

Harmonic Decomposition (PHD) for single sinusoid frequency as described by Eriks-

son and Stoica [26]. The second method was the Multiple Signal Classification (MU-

SIC) algorithm as described by Stoica and Moses [95]. The MUSIC model order was

set to 12 which is near optimal for these simulation conditions.

Two results are shown for IPA. First is the standard model without aliasing and

second is the combination of solutions for the first through the forth IPA harmonic

models. It is again assumed that the aliasing can be resolved with a priori informa-

tion. The results are shown in figure 3.6.

The performance of the standard IPA is exactly as before in figure 3.4. The per-

formance of Pisarenko’s method starts to degrade relative to other methods at this

SNR of 20 dB. The MUSIC algorithm performs very well with a model order of 12
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Figure 3.6: Comparison of simulated mean squared error in frequency estimates with
different algorithms. The simulation conditions were the same as for figure 3.4.

demonstrating nearly uniform performance within about 7 dB of the CRLB. If the

forward-backward linear prediction method of Tufts and Kumaresan [104] was in-

cluded in the simulation using an equally high order model, then it would outperform

the MUSIC algorithm by a few decibels and have a similar performance breakdown

only very near the frequency limits. The composite solution to the first four aliased

harmonics of IPA perform as well as the 12th order MUSIC algorithm although with

slightly less uniformity.

A second simulation was performed to compare the performance of the same

algorithms as a function of SNR. The sample size was maintained at N = 24, the

initial phase angle was φ = 0, the frequency was f = 1/12, SNR ranged from 0 to 30

in increments of 1 and 1000 independent trials were run per SNR value. The results

are shown in figure 3.7
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Figure 3.7: Comparison of simulated mean squared error in frequency estimates with
different algorithms as a function of SNR. N = 24, SNR from 0 to 30, φ = 0, f = 1/12,
1000 trials per SNR value.

All the algorithms with the exception of PHD continue to converge to the exact

frequency as SNR increased. Some non-linear breakdown in performance is present

in all of the algorithms as SNR tends to zero. A dramatic improvement from the

standard IPA to the second harmonic solution is evident. The improvement with

higher harmonic solutions is more modest.

3.5.5 Performance of the Closed Form Two-Sinusoid Model

The performance of the closed-form two sinusoid model was simulated under typ-

ical conditions for the analysis of heart rate variability time-series data. This sim-

ulation is useful to roughly predict the uncertainty in frequency estimates in this

particular application. Heart rate variability signals are often studied to learn more
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about autonomic nervous system behavior under various conditions. The most com-

mon components of interest in short data records are a frequency component near

0.1 Hz resulting from baroreflex effects and a second component near 0.25 Hz that is

related to respiratory control signals [1].

A simulation was constructed with 0.12 Hz and 0.30 Hz sinusoids in Gaussian

white noise. Since the human heart rate is typically near 60 beats per minute, the

normalized frequency scale 0 < f < 0.5 can be used here. The amplitude of the

sinusoids was set to 1 and the initial phase angles were randomly generated for each

trial. SNR was varied from 0 to 30 dB and 1000 independent trials were conducted

for each SNR value. Since the two frequencies are well spaced, it is possible to simply

use the CRLB from the single sinusoid case. Results are shown in figure 3.8.

The performance of the two-sinusoid IPA is reasonably good. Even with an SNR

as low as 4, the standard deviation in the frequency estimates is about 0.012 Hz which

is within an acceptable range for most purposes. This simulation is unrealistic in that

the noise in real HRV data is not white or Gaussian distributed and the amplitudes

of the two components are not typically equal.

3.6 Discussion

The field of frequency estimation is broad with a long history. Most contribu-

tions are now incremental and often arise from the synthesis of separately available

components (as observed by Tufts and Kumaresan [104]). Although coming from

different origins, the total least squares (TLS) Modified Prony method and the TLS

Modified Covariance methods are identical in practice. Both provide the desirable
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Figure 3.8: Simulated mean squared error in the estimates of two frequency com-
ponents as a function of SNR. The closed-form two-sinusoid IPA model was used.
N = 30, f1 = 0.12, f2 = 0.30, a1 = a2 = 1, random initial phase angles, SNR ranged
from 0 to 30, 1000 trials per SNR value.
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statistical properties of zero bias, robust estimation, minimal dependence on initial

phase angles and no additional user defined model order. Unless the lower estimation

variance of high-order models is required for a particular application then the greatly

increased computation is not a worthwhile trade off. In practice, the TLS Modified

Prony Method (or TLS Modified Covariance) is often the optimal choice.

The Improved Prony Algorithm (IPA) presented in this chapter is a reformulation

of the TLS Modified Prony Method for real-valued sinusoids that produces the same

solution in a more compact form. This reformulation facilitates writing the closed

form solution for the one and two sinusoid models as presented. The closed form

solutions are sufficiently compact to perform exact analysis of the expected value and

variance of these estimators. This analysis was presented for the one sinusoid model

and could be performed for the two sinusoid model as well. The closed-form solutions

could also be used to reduce computation time or to program the algorithm directly

into a low-level stand-alone processor.

The error analysis for the single sinusoid frequency estimator was shown to agree

well with simulations in its full exact form and as an approximation. This variance

approximation is especially useful because it maintains its consistency under the full

range of sample size and SNR conditions up to a point where very low SNR and sample

size occasionally result in imaginary frequencies. The error analysis could be used to

generate confidence intervals on frequency estimates without any advance knowledge

of the SNR. If some advance knowledge is available then performance bounds could

be estimated without actually running any analysis. This could be very useful for

feasibility studies and determining whether IPA is sufficient for an application or
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whether higher-order models are required.

Another way to benefit from a priori knowledge was also presented. In the in-

stance where a signal is known to be band limited such as the output of a signal

conditioner or filter bank, IPA may implemented with harmonic aliasing. The a

priori knowledge can then be used to determine which harmonic contains the true

frequency. Alternatively, secondary estimates that span the frequency range could

resolve the aliasing. This method was shown to result is dramatic improvements in

statistical performance while still using a first order model. Performance equaled that

of a 12th order MUSIC algorithm that did not use the a priori information.

The performance of the two-sinusoid closed-form frequency estimator was demon-

strated under conditions similar to the analysis of heart rate variability (HRV) data.

This is an example of when higher order models are not necessarily beneficial. In fact,

a need to perform time-frequency analysis on HRV data would benefit significantly

by using the closed-form IPA estimator simply because of the reduction in computa-

tion time. Significant reductions in the total processing time for large data sets can

dramatically improve the efficiency of a larger research project.

Other potential applications arise in biomedical imaging modalities such as fMRI,

near-infrared spectroscopy (NIRS) or diffuse optical tomography (DOT). The signal

processing of data from these sources must contend with physiological signal fluctua-

tions of similar amplitude to the hemodynamic changes of interest [30,98]. IPA could

potentially model and separate these physiological signal components and thereby

improve the physiological specificity of biomedical signal analysis.

For many applications, the simplicity of an algorithm is equally as important as
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its performance. It is often best to begin any complicated analysis with basic prin-

ciples and only add greater complexity where it is truly necessary. The geometric

perspectives provided on linear prediction and the Prony method demonstrate how

these algorithms arise from basic principles in geometry and trigonometry. The sim-

plicity of the Improved Prony Algorithm makes it an optimal choice for many signal

processing applications and also makes it attractive for use in the educational setting.



Chapter 4

The Effects of Hypnosis on Heart

Rate Variability

4.1 Introduction

Clinical hypnosis is a mind-body technique that operates at the intersection of

subjective perceptions and objective physiological changes. A fundamental challenge

in hypnosis research is that the mental state of patients during hypnosis cannot be

measured directly. Current practices rely on the subjective reports of the subject to

distinguish whether a negative experimental outcome arises because the patient never

achieved the hypnotic state or because hypnosis was an ineffective treatment. Self

reporting is often confounded by a desire to please the experimenter and is usually too

infrequent to capture the dynamics of a hypnotic session. The objective of the present

study is first to relate the subjective perception of the hypnotic state to measurable

physiological changes and second, to demonstrate how these relationships can provide

97
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insight into neurorehabilitation with hypnosis. Accomplishing this goal will require

understanding the physiological basis of hypnosis and previous attempts to measure

the hypnotic state.

A common theory of hypnosis is that it involves an amplification of focused atten-

tion and a reallocation of attentional resources [40]. Hypnosis can also be viewed as a

social interaction between a hypnotist and a subject consisting of an induction, deep-

ening, suggestions and arousal [54]. The efficacy of hypnosis has been demonstrated

in controlled clinical trials with applications in non-pharmacological analgesia [4,60],

control of gastric acid secretion [56], treatment of severe refractory irritable-bowel

syndrome [44, 113] and even the treatment of warts [91]. These clinical applications

of hypnosis illustrate that the hypnotic state can broadly affect physiology. Given

the complexity of hypnotic phenomena, is not surprising that the neurophysiology of

hypnosis is still under investigation.

The electroencephalogram (EEG) has been used to study the electrical activity

in the brain during hypnosis. One of the early observations was that EEG alpha

rhythms (8-13 Hz) were more prominent especially in the left-hemisphere of highly

hypnotizable subjects [69]. An increase in alpha was not, however, observed dur-

ing hypnosis. Later research found an increase in theta (4-7 Hz) power in highly

hypnotizable subjects during hypnosis [83].

During recall of emotional events in hypnosis, DePascalis et al. found increased

40 Hz rhythms with laterality determined by whether the recall was of a positive or

negative event [25]. Perlini and Spanos have reviewed the history of hypnosis and

EEG [75]. Due to the complex nature of the power spectrum changes that have
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been observed in EEG during hypnosis and the practical challenges of instrumenting

subjects with EEG leads in the clinical setting, the EEG methodology was not selected

for further investigation in the present study.

There has been some interest in studying hypnosis with functional brain imaging

technologies. PET and fMRI studies have found significant differences during the

hypnotic state [64, 80, 105]. However, comparing the regions of increased cerebral

activity between the studies reveals little consistency. It may be the case that the

brain activations measured are more related to the specific nature of the hypnotic

suggestions given rather than the hypnotic state per se.

Effects of the hypnotic state on the autonomic nervous system (ANS) reflected in

the control of heart rate has also been studied. The heart rate exhibits spontaneous

fluctuations even at rest that reflect the highly responsive, antagonistic control of

the two branches of the ANS on the heart’s pacemaker cells [1]. The sympathetic

branch increases the HR through the release of norepinephrine, which raises the rest-

ing potential of the pacemaker cells thereby increasing the spontaneous firing rate.

Parasympathetic stimulation, the dominant influence during the resting state, de-

creases heart rate by the reverse mechanism through the release of acetylcholine from

the vagus nerve endings on the pacemaker cells [35].

The variability in the time between subsequent heart beats is a signal called heart

rate variability (HRV). A low frequency (LF) oscillation (0.04-0.15 Hz) found in HRV

signals results from both sympathetic and parasympathetic activity, while a high

frequency (HF) oscillation (0.15-0.4 Hz) is associated mainly with parasympathetic

stimulation through the vagus nerves [12].
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The mediation of heart rate by the vagus nerve originates in the vasomotor center

in the reticular substance of the medulla and the lower third of the pons. Many

higher centers in the nervous system can influence the vasomotor center and thereby

affect HRV. The areas of dominant influence include the hypothalamus, the anterior

temporal lobe, orbital areas of frontal cortex, the anterior part of the cingulate, the

amygdala, septum and hippocampus. These many areas can have either excitatory

or inhibitory influences.

The LF signal component arises from vasomotor regulation of arterial blood pres-

sure via the baroreceptor reflex. Oscillations arise because of the time delays inherent

in this negative feedback control system. The baroreceptor reflex influences heart rate

through connections between the vasomotor center and the heart’s pacemaker cells

through sympathetic nerve fibers and the vagus nerves. These vasomotor waves are

often called Mayer waves.

The HF component results from respiratory influences and is often called the

respiratory sinus arrhythmia (RSA). Activity in the respiratory center in the medulla

overlaps into the vasomotor center and influences heart rate through through vagal

stimulation of the hearts pacemaker cells. Inspiration also decreases pressure in the

thorasic cavity thereby reducing the quantity of blood returning to the heart and

reducing cardiac output and arterial pressure. The pressure changes also excite the

arterial stretch receptors and affect heart rate through the baroreflex pathways [35].

The spectral power in the HF component has been shown to increase during con-

scious relaxation compared with rhythmic breathing at 0.25 Hz [85]. Peng et al. found

exaggerated heart rate oscillations associated with slow breathing during meditation
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that were significantly different from metronomic breathing and from spontaneous

nocturnal breathing by normal adults or elite athletes [74]. There are accounts in

the hypnosis literature that HRV is affected by mental absorption [116] and by the

hypnotic state [24, 86]. These studies have found increases in total power and HF

power relative to LF power suggesting a shift in the autonomic nervous system to-

ward parasympathetic control during meditation, mental absorption and hypnosis.

This broad range of inputs to the HRV signal is in fact advantageous to the study

of hypnosis. Unlike EEG and brain imaging, the mental processes that occur during

hypnosis are likely to affect HRV in more generalized ways and exhibit less sensitivity

to the specific nature of the suggestions given. HRV is also advantageous because it

may be measured from a readily accessible source. ECG equipment is ubiquitous in

the clinical environment and is easily instrumented with digitizing capability.

Separating the components of the HRV signal can be a difficult signal processing

challenge and remains a highly active area of research. The previous studies of HRV

changes during hypnosis already mentioned used classical power spectrum analysis.

Significant additional insight can be gained by applying more sophisticated signal

processing techniques that have recently gained popularity in the study of HRV such

as time-frequency analysis [108] and wavelet analysis [103]. A third example of an

advanced technique that can be applied to HRV analysis is the Improved Prony Al-

gorithm (IPA) presented in Chapter 3. The advantage that these modern techniques

offer is temporally localized characterization of the HRV components.

In the present study, IPA analysis is used to identify the same LF and HF compo-

nents of HRV that are known to be significant during hypnosis and the same overall
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changes in LF and HF power are observed. A new observation of a downward fre-

quency shift in the HF component is also found. The temporal localization of IPA

analysis is then used to correlate the dynamic self rating of hypnotic depth with HRV

parameters revealing significant relationships.

The utility of the HRV parameters as dynamic predictors of hypnotic effects is

then evaluated for stroke subjects undergoing the motor function therapy described

in Chapter 2. It is shown that the autonomic effects of hypnosis persist during motor

function testing conducted immediately after a hypnosis session. The temporally

localized HRV analysis is used to show that parameters correlate with specific aspects

of motor performance. These results are used to gain insight into the mechanisms by

which hypnosis facilitates the recovery of motor function for these stroke subjects.

4.2 Methods

Ten normal subjects participated in the study (4 male, 6 female, mean age 21).

Two subjects reported having some familiarity with hypnosis. None of the subjects

had any history of psychological disorders, trauma or cardiac health problems. None

of the subjects were currently taking medications. An inclusion criteria was that

subjects have intact hypnotizability as determined by the Hypnotic Induction Profile

[92]. One potential subject was excluded from participating in the study under this

criteria. Informed consent was obtained in accordance with a protocol approved by

the local human subjects protection committee.

Data from three stroke subjects who participated in the study of Hypnosis-Aided

Recovery of Motor Function After Stroke are included in the present analysis. They
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are subjects 4, 5 and 6 who participated in the study described in Chapter 2 of this

thesis. These are the only subjects whose ECG record was systematically recorded

simultaneously with performance of the hand grip task. Subjects 4 and 5 were male

and 6 was female. Their baseline levels of motor recovery were moderate, good and

poor as determined by the Fugl-Meyer Test [32]. The mean age was 46. All had

intact hypnotizability measured with the Hypnotic Induction Profile.

4.2.1 Experimental Conditions

Normal Subjects

During the control condition subjects were instructed to sit comfortably and relax

with their eyes closed while listening to the experimenter. Subjects were to determine

whether a series of statements are true or false in order to ensure that the subjects

stayed awake and focused. The content of the questions had minimal emotional

content and required only commonly held knowledge. An example of a true statement

was, “bicycles have two wheels” and a false statement was “honest people tell many

lies.” Subjects indicated their responses by moving the same lever used to indicate

hypnotic depth.

During the hypnosis condition, subjects were instructed to sit comfortably with

their eyes closed while listening to a hypnotic induction and suggestions spoken by

the experimenter. The hypnotic induction used was standard fractional relaxation

with deepening suggestions of increased awareness of any physical sensations that

accompany hypnosis. Further suggestions were given for the subjects to take a “men-

tal vacation” to a pleasent location such as a warm sunny beach and subjects were
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encouraged focus on imagined sights, sounds and feelings. Subjects were instructed

to move a lever to indicate how hypnotized they felt on a scale of 0 to 5 during the

experiment. Instructions were given to move the lever any time a change was per-

ceived in hypnotic depth. Subjects were reminded of these instructions every 1 to 2

minutes throughout the experiment.

The control and hypnosis sessions each lasted for 10 minutes. The control condi-

tion was always conducted prior to the hypnosis condition because it was anticipated

that there would be lasting effects of hypnosis that would more significantly confound

the experiment than the lack of randomization in the order of conditions.

Stroke Subjects

The protocol for stroke subjects from the study on Hypnosis-Aided Recovery of

Motor Function After Stroke was the following. The same force following motor task

was performed during, just prior to and just after the hypnosis sessions with both

the paretic and non-paretic hand. Subjects held a hand grip device that contained a

force transducer. The grip force signal was digitized at 200 Hz and represented on a

computer screen by a blue circle whose radius was proportional to the force level. A

concentric red circle was also shown on the computer screen with a radius indicated

the target force level. The target force followed a square wave with a 15 second period

and remained at the peak force for 3 seconds within each 15 second block. One trial

included 18 periods of the force following task.

One or two trials were conducted on the paretic and non-paretic hand before and

after the hypnosis sessions in a randomized order. The hypnosis sessions consisted
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of relaxation imagery followed by mental and physical practice of movements while

maintaining mental self-imagery without physical impairment. This therapy was

demonstrated in Chapter 2 of this thesis to result in a reduction in reaction time and

a reduction in the time required to relax the grip force of the paretic hand with this

task.

4.2.2 Deriving the Heart Rate Variability Signal

The term heart variability refers to the either the oscillations in heart rate mea-

sured from beat to beat or the oscillations in pulse interval over time [12]. Pulse

interval was selected for the analysis because efferent vagal stimulation has a linear

relationship with pulse interval and a hyperbolic relationship with heart rate [72].

ECG was measured with a 3-lead clinical patient monitor (78354A, Hewlett-

Packard, Palo Alto) and sampled at 200Hz with a 12 bit analog to digital converter.

A matched filter beat detection algorithm was used to determine the beat times in

the ECG record. A clean QRS complex from the ECG record for each subject was

manually selected and used as the detection kernel. The kernel was reversed in time

then convolved with the subject’s ECG record. The convolved signal was normalizing

by the squared then summed value of the kernel so that a value of 1 indicates perfect

correlation with the kernel. This detection signal was thresholded at 0.5 to localize the

time region surrounding each beat. The resulting peaks were fit by least squares with

a parabola and the beat times were determined by solving for when the first derivative

of the parabola was zero and the second derivative was negative. Differences between

beat times were taken to obtain the inter-beat interval (IBI) series.
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It was also necessary to correct for false beat detection due to motion artifacts in

the ECG record. Distributions of IBI data and the finite difference of IBI data were

calculated by fitting a Gaussian curve to histograms of the data by nonlinear least

squares. Outlying data due to motion artifacts and ectopic beats were identified as

those falling more than 4 standard deviations from the mean in the IBI distribution

or 3 standard deviations from the mean in the IBI derivative distribution. These data

points were replaced by the values from a 10 point median filter on the original IBI

data. The percentage of corrected pulse intervals was below 2% on all subjects.

The natural sampling rate of the HRV signal is irregular due to the variation in

beat times. All HRV data was consequently resampled to a regular time base using

a piecewise cubic spline interpolation prior to signal analysis as detailed below.

4.2.3 Statistical Analysis of Heart Rate Variability

Three types of signal analysis were performed on the HRV data. (1) A basic

mean and standard deviation were calculated to examine overall properties of the

HRV data during the control and hypnosis conditions. (2) The power was measured

in four frequency bands that correspond to accepted physiological divisions through

the use of a filter bank. This provides some insight into how changes in total power

arise from different physiological sources. (3) The HRV data series were divided

into 30 second intervals then analyzed with the Improved Prony Algorithm. This

final method models the frequency and power of physiologically relevant components

localized in time and enables comparisons with other dynamic data sources such as

self-rated hypnotic depth and motor performance on individual trials.



Chapter 4: The Effects of Hypnosis on Heart Rate Variability 107

The mean and standard deviation was calculated from the HRV without resam-

pling to a regular time base. Assuming an average resting heart rate of 70 beats per

minute, this would result in calculating these statistics from approximately 700 data

points for the normal subjects during each experimental condition.

Prior to analysis with the filter bank the HRV was interpolated onto a regular 3 Hz

time base by cubic spline interpolation. The mean was subtracted and the remaining

signal was divided into four components with a filter bank. The pass bands for the

filter bank were below 0.04 Hz, between 0.04 and 0.15 Hz, between 0.15 and 0.40

Hz, and above 0.40 Hz. These bands follow the traditional divisions in HRV analysis

of very low frequency (VLF), low frequency (LF), high frequency (HF) and residual

respectively [12]. Forth order digital infinite impulse response (IIR) filters were used.

The filters were designed by the Butterworth method because the frequency response

is maximally flat in the pass band. The power in each band was assessed by computing

the mean squared values of the filter outputs.

In order to examine the time-varying statistical properties of the HRV data, the

data records were divided into 30 second periods. This period length was chosen

because it is near the minimum length for stable estimation the two sinusoid compo-

nent frequencies and powers with the Improved Prony Algorithm. Prior to the IPA

analysis, the HRV data in each 30 second period was resampled to a regular 3 Hz time

base by cubic spline interpolation. No other prior conditioning of the HRV signal was

performed.

A two-component IPA model was used with a lag time of 2 samples. The two

components are intended to parameterize the LF and HF components of the HRV
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signal. This combination of sampling rate an lag time enables the IPA model to

unambiguously distinguish frequencies up to 0.75 Hz. This frequency range is suffi-

cient to model the typical HRV signal components which are normally found below

0.4 Hz and can model higher frequency noise carried by a heart rate up to 90 beats

per minute. The maximum heart rate of subjects in this study remained below this

threshold.

Since the HRV signal is not zero mean, it was necessary to subtract the mean

in the IPA analysis. The mean IBI in each 30 second HRV sample was estimated

within the difference equation matrix as described in Chapter 3 of this thesis. The

power for each sinusoid was estimated from the recovered sinusoid components also as

described in Chapter 3. The outputs of the IPA analysis were estimated heart rate,

the frequency and amplitude of two sinusoid components and a residual localized in

a 30 second time period.

4.2.4 Correlating HRV Statistics with Hypnotic Depth

The normal subjects used a lever to self rate their hypnotic depth during the 10

minute hypnosis condition. The lever position was digitized at 200 Hz simultane-

ously with recording the ECG data. The lever position data was normalized by the

maximum rating reported by each subject so that a value of 1 indicates the highest

reported hypnotic depth for each subject. The 10 minute experiment was divided

into 30 second periods and the mean normalized lever position was calculated for

each period.

HRV data from the same 30 second periods was passed to the IPA to obtain statis-
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tical parameters. The IPA parameters from the hypnosis condition were normalized

by dividing each parameter by the mean value from the control condition for each

subject. The normalized parameter values from all 30 second periods and from the 10

subjects were pooled. This resulted in a total of 200 data points for the lever position

and each IPA parameter.

The lever position data was then divided into 5 bins of equal count (40 measure-

ments per bin). The mean and standard error for the corresponding IPA parameters

were then calculated. A linear regression was then performed between binned mean

lever positions and the corresponding mean IPA parameters. By performing the cor-

relations between means, the statistical power from the number of data points is

traded for reduced variance. This has the effect of increasing the correlation coef-

ficients while simultaneously decreasing significance. This approach was chosen to

better illustrate the general trends in the data.

4.2.5 Relating HRV Hypnotic Depth to Motor Performance

The motor performance and HRV data from the stroke subject trials immediately

after hypnosis were examined. The 30 second periods of HRV data centered on each

instance of motor task performance were parameterized using the IPA method. The

parameters were normalized by the mean pre-hypnosis parameter values for each

subject.

Six measures of motor performance were assessed from each instance of the force

following task as described in Chapter 2. The measures were the reaction time at the

start and stop of the force following block (start and stop time), the time required to
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transition from rest to the peak force and from the peak force back to rest (rise and

fall time), the absolute error in peak force (peak error) and the standard deviation in

the peak force (peak st. dev.). These motor performance measures were normalized

within each subject by subtracting the mean value then dividing by the standard

deviation.

The IPA parameters derived from HRV and the normalized motor performance

measures were pooled from the 3 stroke subjects. The IPA parameters were divided

into 5 bins of equal count (38 estimates per bin). The mean and standard error of

the corresponding motor performance measures were calculated. Comparing each of

the six IPA parameters with all six motor performance measures totals 36 data pairs.

The IPA parameters were used as the independent variable in the ensuing regressions

analysis.

4.3 Results

4.3.1 Normal Subjects

The overall changes in heart rate variability that occurred in the normal subjects

during hypnosis are shown in figure 4.1. Panel (a) shows the mean and standard

deviation normalized by the control condition values. The standard deviation is

a measure of the amount of variation in heart rate over time. The mean control

condition inter-beat interval (IBI) was 861 ms with an average standard deviation

of 55.4 ms. The mean IBI increased during hypnosis reflecting a decrease in average

heart rate. The standard deviation in IBI increased during hypnosis reflecting greater
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Figure 4.1: Differences in the inter-beat interval (IBI) signal during hypnosis com-
pared with the control condition. All values were normalized by the control condition
results. Error bars are standard error (n = 10). Values were compared with a one-
sample, two-tailed t test. Significant differences (p < 0.05) between the hypnosis and
control condition are indicated by ∗.

variability.

Panel (b) of figure 4.1 shows the results of the filter bank analysis. All values

are shown relative to the control condition RMS amplitude. The control condition

amplitudes of IBI oscillations in the respective frequency bands prior to normalization

were 34.8, 40.5, 40.3 and 7.6 ms respectively. The largest increase in RMS amplitude

was in the high frequency band (0.15 to 0.40 Hz).

Parameters calculated with the Improved Prony Algorithm (IPA) are shown in

figure 4.2. The mean values of the parameters for each subject were used in this

comparison resulting in n = 10 for each parameter. The values were normalized by

the results from the control condition. The average control condition heart rate was

70.3 beats per minute (bpm); this value is very close to the estimate made from the

IBI data directly of 69.7 bpm. The respective mean frequency values from the control
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Figure 4.2: Mean IPA parameter differences between the hypnosis condition and the
control condition. Error bars are standard error (n = 10). Group differences were
tested with a one-sample, two-tailed t test. Significance (p < 0.05) is indicated by ∗.
Within subject tests were also performed from parameters estimated from 30 second
periods of data with a two sample, two-tailed t test. The number of subjects with
significant individual differences (p < 0.05) is indicated by the number in parenthesis
(out of 10 total subjects).

condition for the two components prior to normalization were 0.11 and 0.32 Hz. The

corresponding amplitudes of IBI oscillations were 40.4 and 23.5 ms. The residual

amplitude was 7.6 ms.

The significant group differences (p < 0.05) during hypnosis compared to control

were a decrease in heart rate, a decrease in the frequency of the second (HF) com-

ponent and an increase in the corresponding amplitude. There was also a significant

increase in the first (LF) component amplitude and a decrease in the residual am-

plitude during hypnosis. These differences are similar to those found in the overall

differences reported in figure 4.1.

The results of the linear correlation between the normalized IPA parameters and

self-reported hypnotic depth (lever position) is shown in figure 4.3. Only three of the
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parameters were found to significantly correlate with the lever position. Heart rate

was negatively correlated with lever position meaning that heart rate tended to be

lower when subjects reported feeling more hypnotized. The frequency of the second

(HF) component was also negatively correlated with the lever position and the ampli-

tude associated with the HF component was positively correlated. Other parameters

were not significantly correlated with lever position although the amplitude of the

first (LF) component approached significance at p = 0.12.

A temporal trend was found in the self-rating of hypnotic depth. Subjects tended

to report greater hypnotic depth later in the hypnosis sessions. A two-sample t

test between the average lever position for each subject during the first half of the

hypnosis sessions compared with the second half of the sessions shows a difference

that is significant at a level of p < 0.01.

4.3.2 Stroke Subjects

The mean IPA parameters for the stroke subjects is shown in figure 4.4. The

parameter values are normalized by the pre-hypnosis measurements in the same way

as used for figure 4.2. The pre-hypnosis mean heart rate was 76.9 bpm, the mean

frequencies for the two components were 0.078 Hz and 0.32 Hz. The corresponding

mean amplitudes were 29.6 ms and 9.4 ms respectively. The mean residual amplitude

was 3.7 ms. The number of subjects with significant individual differences are again

shown in parentheses in the figure.

Similar trends to the differences during hypnosis were found in the stroke subject

data immediately after hypnosis as with the normal subjects during hypnosis for a



Chapter 4: The Effects of Hypnosis on Heart Rate Variability 114

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Self−Rated Hypnotic Depth

N
or

m
al

iz
ed

 H
ea

rt
 R

at
e

(a) Heart Rate

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Self−Rated Hypnotic Depth

N
or

m
al

iz
ed

 F
re

qu
en

cy
 2

(b) Frequency 2

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

Self−Rated Hypnotic Depth

N
or

m
al

iz
ed

 A
m

pl
itu

de
 2

(c) Amplitude 2

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

Self−Rated Hypnotic Depth

N
or

m
al

iz
ed

 A
m

pl
itu

de
 1

(d) Amplitude 1

Figure 4.3: Correlation between self-rated hypnotic depth and three of the IPA param-
eters derived from HRV data. Forty measurements are included in each bin. The error
bars show the standard error. The significance of the correlations was determined with
an F test (n = 5). Panel (a) shows the negative correlation (m = −0.13) between
binned lever position and corresponding mean heart rate (R2 = 0.91, p < 0.05).
Panel (b) shows the negative correlation (m = −0.18) for HF frequency (R2 = 0.89,
p < 0.05). Panel (c) shows the positive correlation (m = −0.25) for the correspond-
ing HF amplitude (R2 = 0.83, p < 0.05). Panel (d) shows the insignificant positive
correlation (m = 0.24) with the LF amplitude (R2 = 0.62, p = 0.12).
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Figure 4.4: Mean IPA parameters for stroke subjects while performing a motor task
just before and after a hypnosis session focused on the improvement of motor per-
formance. The means from the 3 subjects are shown relative to the pre-hypnosis
means. Error bars are standard error (n = 3). Individual differences were tested with
a two sample, two-tailed t test on the data from all 30 second periods in the motor
performance trials (30 ≤ n ≤ 40). The number of subjects with significant differences
(p < 0.05) are shown in parentheses (out of 3 total).

number of parameters. Most notably, all three subjects showed decreased heart rate

and increased amplitude in both the first (LF) and second (HF) components from

the IPA analysis. Changes in HF frequency and residual were not apparent.

The results of correlating each of the IPA parameters with the motor performance

of the stroke subjects is shown in figures 4.5 and 4.6. Only the significant findings

are shown. The correlations are between the means of 5 bins of the relevant IPA

parameter and the corresponding motor performance measures in time. The motor

performance measures were normalized by their means and standard deviations prior

to pooling data from 3 subjects.

Significant correlations were found between heart rate and the rise time and fall

time as shown in panels (a) and (b) of figure 4.5. The rise and fall time refer to the
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amount of time it took for the subject to transition from zero force to the target hand

grip force and then from the target force back to zero force respectively. They are

measures of the muscle contraction and relaxation time. The correlations indicate

that muscle contraction time tended to be shorter and muscle relaxation time longer

when heart rate was higher.

The amplitude of the HF component was also found to significantly correlate with

rise and fall time as shown in panels (c) and (d) of figure 4.5. The correlations with

component 2 amplitude are in the opposite direction as the correlations with heart

rate. This is consistent with the direction of change in heart rate and component 2

amplitude during hypnosis for the normal and stroke subjects.

The only other significant correlations found were with the frequency of the HF

component and the start delay and peak standard deviation as shown in figure 4.6.

The start delay measures time between when the subject received a simultaneous

auditory and visual cue to match the target force and the peak standard deviation

quantifies the fluctuations in force while the subject attempts to maintain the target

force. Essentially, start delay is a reaction time and peak standard deviation measures

force steadiness.

Component 2 frequency was negatively correlated with start delay indicating

poorer reaction time with lower frequency. The positive correlation with peak stan-

dard deviation indicates improved steadiness with lower frequency. The overall direc-

tion of change in HF component frequency during hypnosis was to decrease for the

normal subjects but was inconclusive for the stroke subjects as shown in figures 4.2

and 4.4.
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Figure 4.5: Correlations among IPA parameters and measures of motor performance.
An equal number IPA parameter estimates (n = 38) are included in each of the 5
bins. A negative correlation (m = −4.7) is shown in panel (a) between heart rate and
rise time (R2 = 0.84, p < 0.05). Panel (b) shows a positive correlation (m = 6.6) with
stop time (R2 = 0.85, p < 0.05). The direction of correlation is reversed between HF
amplitude and rise and fall time. In panel (c), the amplitude is positively correlated
(m = 0.51) with rise time (R2 = 0.94, p < 0.05). In panel (d), the amplitude is
negatively correlated (m = −0.76) with fall time (R2 = 0.83, p < 0.05).
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Figure 4.6: Correlations between IPA estimated HF component frequency and mo-
tor performance measures. The analysis is identical to that performed for figure 4.5.
Component 2 frequency was found to positively correlate (m = 2.0) with peak stan-
dard deviation (R2 = 0.97, p < 0.05) as shown in panel (a). Panel (b) shows the
negative correlation (m = −3.9) found with start delay (R2 = 0.96, p < 0.05).

4.4 Discussion

4.4.1 Overall Statistical Changes During Hypnosis

Experiments conducted on normal subjects confirmed that statistical changes in

heart rate variability (HRV) occur during hypnosis. Heart rate was found to decrease

while overall variability increased during hypnosis. In terms of the low frequency (LF)

and high frequency (HF) components, there was an increase in the amplitude of both

components although the greater increase was in the HF component. These changes

in spectral power during hypnosis are consistent with reports in the hypnosis-HRV

literature [24,86].

A new observation that arose from the use of the Improved Prony Algorithm was
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a decrease in the frequency of the HF component. This frequency shift could result

from a decrease in respiration rate during hypnosis. Subjects often took a deep breath

during the hypnotic induction but no suggestions were given to the subjects to alter

their respiration rate during the experiment when HRV measurements were made.

Thayer et al. found that the HF frequency in HRV correlates well (R2 = 0.88) with

respiration rate measured with a strain gauge sensor around the chest [101]. This

correlation was found using an autoregressive spectral algorithm similar to the IPA

method used in the present research.

It has been suggested that respiratory frequency should be controlled when pre-

dicting tonic parasympathetic activity from HRV [34]. This is because increased

parasympathetic tone has the dual effect of increasing the respiratory sinus arrhyth-

mia (RSA) in HRV and decreasing respiration rate. A confound arises because artifi-

cially lowering the respiration rate will also increase RSA and affect parasympathetic

tone. For the purpose of studying hypnosis, it is unimportant to the end result which

effect preceded the other. The relevant observation is simply that hypnosis appears

to have a spontaneous effect on breathing just as altered mental activity has been

shown to affect breathing in other research [89].

A second new observation of HRV changes during hypnosis is the decreased resid-

ual amplitude in the IPA analysis. This decrease in residual indicates that the two

sinusoid model better fit the HRV signal during hypnosis compared to control. For the

purpose of the IPA analysis, the residual is noise. Another view is that the residual

relates to nonlinear dynamics in HRV that remain uncharacterized by IPA.

Nonlinear dynamics in HRV have been well studied with chaos theory and fractal
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analysis [33]. Examples are studies of the scaling exponents in the power spectrum [73]

and approximate entropy [76]. Given the significant change in residual amplitude ob-

served during hypnosis, further study of the nonlinear dynamics may provide further

insight into hypnosis or greater specificity in the HRV correlates.

Although there were general trends in the HRV parameter changes that occurred

during hypnosis, there was not full consistency across all the normal subjects for any

single parameter. There are reasonable explanations for this result. One possibility is

that subjects do not all have the same physiological reaction to hypnosis. Significant

individual variation is known to exist in hypnotizability [111]. A second possibility is

that some of the subjects falsely reported entering a deep hypnotic state because of

a lack of experience and perceived expectation to report a positive experience with

hypnosis. These issues cannot be resolved from this study because of its limited size

and scope.

4.4.2 Correlations with Self-Rated Hypnotic Depth

Correlations were found between mean self-rated hypnotic depth and mean HRV

parameters with a 30 second temporal resolution IPA analysis. Heart rate and HF

frequency were negatively correlated and HF amplitude positively correlated with

self-rated hypnotic depth. These correlations with self ratings are a novel finding

from this research.

The significance of the findings is tempered by the fact that the variability in

the HRV parameters was too great to show a high correlation without averaging

repeated measurements in time and across subjects. The predictive utility of any
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single measurement was poor. A confound also exists in the present result because

of the temporal trend of increasing self-rated hypnotic depth as the hypnosis sessions

proceeded. Future studies should attempt to modulate the hypnotic depth with

suggestions or repeated induction and arousal.

Five of the IPA parameters were found to change significantly during hypnosis

but only three of those parameters correlated with perceived hypnotic depth. One

of the parameters that changed significantly without correlating with hypnotic depth

was the LF amplitude. A possible reason why the LF amplitude did not correlate

with perceived hypnotic depth is because it is affected by both the sympathetic and

parasympathetic branches of the ANS. If perceived hypnotic depth is related more to

parasympathetic influence then the sympathetic effects could corrupt this measure.

The other parameter that did not correlate with hypnotic depth but did change

during hypnosis was the model residual. Because information in the residual is ignored

by the IPA analysis, interpretation of the residual is problematic without further

analysis by other methods.

One of the motivations for the present research is to obtain real-time estimates of

hypnotic depth. Given the variability in local HRV parameters, it would be necessary

to combine the HRV parameters with other statistically independent physiological

measurements and thereby reduce the variability improve the predictive utility. Other

potential sources of relevant physiological information from practical sources in the

clinical environment are nonlinear HRV dynamics, galvanic skin resistance, blood

oxygenation and eye tracking. It may also be possible to implement near-infrared

spectroscopy of blood oxygenation in the brain [109] in a manner that would easily



Chapter 4: The Effects of Hypnosis on Heart Rate Variability 122

accommodate diverse clinical settings.

The technology to make such a real time measurement of hypnotic depth would

be of great value to clinical applications of hypnosis because it would provide a quan-

titative means of monitoring a subjective therapy. This feedback could be used to

help guide the hypnotist to the most effective hypnotic suggestions for a specific in-

dividual. The feedback could also help a patient to understand the hypnotic state

through experimentation with guided self-hypnosis. Hypnosis research could also be

enhanced by reducing variation in measurements due to variations in hypnotic depth.

4.4.3 Correlations with Motor Performance During Therapy

The motor function testing and concurrent HRV measurement occurred immedi-

ately after hypnosis sessions with the stroke subjects unlike with the normal subjects.

Even after hypnosis, average changes in heart rate and the amplitude of the LF and

HF frequency components are similar to those of the normal subjects during hyp-

nosis. When comparing the average changes, the small number of subjects (n = 3)

precludes drawing any significant conclusions. That said, there were also differences

in that the LF amplitude increased more than the HF amplitude; the frequency shift

in the HF component was not observed on average and neither was the reduction in

residual power. When considered as a whole however, the HRV parameters from the

stroke subjects suggest that there are some autonomic nervous system changes that

persist after hypnosis.

Temporally localized HRV parameters were found to correlate with motor per-

formance by stroke subjects participating in the study of hypnosis-aided recovery of
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motor function presented in Chapter 2. Heart rate and HF amplitude correlated with

muscle contraction and relaxation times. Faster muscle contractions occurred when

heart rate was higher and HF amplitude was smaller. Faster muscle relaxation times

occurred conversely for lower heart rate and higher HF amplitude. The frequency of

the HF component correlated with the steadiness of the peak force and reaction time

with increased steadiness but slower reaction times occurring during times with lower

HF frequency.

Other significant correlations between HRV parameters and motor performance

measures were not found. Because only three stroke subjects were considered in this

analysis, individual differences contribute significantly to the results. The correlations

found are significant in this group but generalizations must be tempered. Correla-

tions that were not found in the present study could become important factors when

examining a larger population.

The differences in muscle contraction and relaxation rate support the hypothesis of

a hypnosis induced change in muscle tone. This effect could result from a generalized

physiological relaxation response that is known to occur during hypnosis [5]. If this

relaxation response is indeed responsible for reducing muscle tone (thereby increasing

contraction and decreasing relaxation rate) then the same explanation reasonably

applies to the reduction in spasticity observed in one of the stroke subjects described

in Chapter 2.

The increases in force steadiness and reaction time during decreased HF frequency

could be described in engineering terms as an increased dampening effect resulting

in a more sluggish response. The HF frequency was not correlated with contraction
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or relaxation time. One possible explanation for this result is that the HF frequency

is not simply related to the relaxation response that occurs during hypnosis but is

instead related to the level of attentional processing which is recognized as a significant

aspect of hypnosis [22].

In the context of this motor function therapy, hypnosis was used to shift attention

from the present impaired physical state to an internally generated state that is fully

functional. When the subjects were required to actually perform a motor task, the

internal and external physical representations naturally compete for attention. A

greater focus on the internal state associated with decreased HF frequency would

explain the correlation with a more sluggish response that was observed.

These insights into the clinical application of hypnosis to the recovery of motor

function after stroke show how the dynamic parameterization of heart rate variability

can be applied. The temporal localization and frequency tracking demonstrate ad-

vantages of employing the Improved Prony Algorithm. By combining these heart rate

variability parameters with other physiological information, it may become possible

to predict hypnotic depth in real time in the clinical setting.
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Conclusion

This research set out to provide answers to a skeptical community on the benefits

of hypnosis for the recovery of motor function after stroke. The principle finding from

the functional brain imaging and motor function testing is that hypnosis appears to

have a moderate beneficial effect even 6 months to years after the stroke event when

further recovery is not expected. These findings are only preliminary because of the

pilot nature of this study. Due to the novelty of this direction of research, much of

the outcome is intended to establish a framework for further investigation.

5.1 Mind-Body Interactions in Stroke Recovery

It became clear from interactions with subjects in this study that their physical

impairments were entangled with psychological factors. Impairments were found to

exist both physically and in the imagination. Overcoming the imagined impairment

was emotionally difficult for many subjects and was a precursor to improvement in

125
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physical performance.

The results of the force following task revealed improved reaction time and faster

muscle contraction and relaxation rate following hypnosis. The case reports for the

subjects included accounts of reduced spasticity, increased range of motion, improved

fine motor control and improved muscle tone. These findings suggest a moderate

effect of hypnosis for the recovery of motor function.

Evidence of cortical reorganization was found in the fMRI results. Motor task per-

formance after hypnosis was associated with increased extent of activation in bilateral

sensorimotor cortex and increased activation in the undamaged cerebral hemisphere

relative to the damaged hemisphere. This evidence is consistent with the hypothesis

that the hypnosis intervention resulted in cortical reorganization.

The changes in brain activation measured with fMRI showed some persistent

effects of the hypnosis 3-5 days after the last intervention session. Motor function

testing after the end of the hypnosis intervention period showed the retention of most

performance gains for the 2-3 weeks until the end of the study.

It was found that hypnotic regression prior to the stroke event did not automat-

ically result in improved motor function. Instead a process of alternating between a

state of remembered wellness and present awareness combined with physical practice

was found to be effective. The integration of remembered wellness into the present

required perseverance from experimenter and subject before success was achieved.

Performance gains occurred first during mental practice with remembered wellness,

next during mental practice with present awareness and lastly during physical prac-

tice. The subjects embraced even small improvements in motor performance and
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this led to greater commitment to the hypnosis intervention and further performance

gains.

An extension of the present findings would be to examine whether psychological

internal models play a role in the somatotopic representation of the extremities for

stroke patients. A functional brain imaging study of well recovered stroke subjects

could help to explore this further. The subjects would be asked to recall their impair-

ments under one condition and to focus on their present level of function as a control.

The resulting functional maps would reveal whether the neurological representation

changes with the imagined internal model.

One of the stroke subjects showed changes in brain function during imagined

movements before and after hypnosis. This suggests that it may be possible to image

functional changes during hypnosis therapy sessions. However, this would require

a different imaging technology because the fMRI environment is too restrictive to

properly conduct a therapy session. A possible solution is to use near-infrared spec-

troscopic imaging. A subject could sit in a chair with freely mobile upper extremities

while brain function is silently imaged with this technology.

5.2 The Physiology of Hypnotic Depth and Hyp-

notic Effects

An Improved Prony Algorithm (IPA) was presented for the analysis of heart rate

variability (HRV). The algorithm, based on the Total Least Square Modified Prony

Method has a concise implementation that facilitates exact error analysis and effi-
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cient computational requirements. Although the error in IPA frequency estimates

are statistically sub-optimal, the error is acceptably small for HRV analysis and no

additional model order terms or convergence criteria need to be specified, thereby

simplifying the analysis. The IPA analysis was applied to HRV data from normal

subjects and stroke subjects in the present study.

The IPA analysis was used to identify the frequency and amplitude of the low

frequency (LF) and high frequency (HF) components of HRV. The amplitude of

the LF and HF components were found to increase during hypnosis with a greater

increase in the HF component. This is evidence of a shift in the autonomic balance

toward parasympathetic control and is consistent with other studies of hypnosis and

HRV [24,86]. A decrease was also found in the frequency of the HF component. The

HF frequency is highly correlated with respiratory frequency [101] and is likely the

result of a spontaneous decrease in respiratory frequency during hypnosis. This HF

frequency shift is not discussed in previous studies of hypnosis and HRV because the

signal processing methods used in previous studies did not enable this observation.

Another novel observation of HRV changes during hypnosis was that the two

sinusoid model residual decreased during hypnosis. This indicates that the HRV

signal during hypnosis contains fewer nonlinear dynamics that are not well described

by the model. These nonlinear dynamics could be studied further with methods from

chaos theory and fractal analysis that have been applied to HRV analysis for other

purposes. It is possible that an examination of the reduced nonlinear dynamics in

HRV during hypnosis could provide additional insight into the physiology of hypnosis.

Experiments with normals revealed that the perception of hypnotic depth dynami-
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cally correlates with heart rate, HF frequency and HF amplitude. This result suggests

that perceived hypnotic depth is related to the relaxation response of the autonomic

nervous system that occurs during hypnosis [5]. These correlations were found on a

30 second time scale indicating that hypnotic depth fluctuates dynamically.

These findings of physiological correlates of hypnotic depth are an important step

toward developing a physiologically based, real-time estimator of hypnotic depth that

could be used to monitor hypnosis in the clinical setting. Such a device would provide

quantitative feedback on an otherwise subjective perception and would be useful for

many clinical hypnosis applications beyond neurorehabilitation. An example where

the physiological monitoring of hypnotic depth would be important is with hypnotic

analgesia [4, 60] where the timing of painful steps in a procedure could be adjusted.

Another application is to speed the training of patients learning to use hypnosis to

control gastric acid secretion [56] or irritable-bowel syndrome [44,113].

The increase in HF amplitude and decrease in heart rate was found in the stroke

subjects during motor performance testing immediately after hypnosis. The decrease

in HF frequency and decrease in residual power were not found. This provides evi-

dence that some autonomic changes persist after hypnosis with the stroke subjects.

Some of the HRV parameters were found to correlate with certain motor perfor-

mance measures. HRV changes associated with the relaxation response were associ-

ated with slower muscle contraction but faster muscle relaxation. A downward shift

in the HF frequency, which is an index of respiration rate, correlated with slower

reaction times and more steady force control. The changes in muscle contraction and

relaxation rate could result from decreased muscle tone after hypnosis. The observed
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reduction in spasticity in one of the subjects could also be explained by a decrease

in muscle tone. The slower reaction time and increased force control steadiness could

result from altered attentional processing after hypnosis.

More understanding of the hypnotic state could be gained if additional physio-

logical variables were measured. Greater and randomized modulation of hypnotic

depth should be correlated with self rating in future experiments. Subjects could

also dynamically report the level of success with different suggestions throughout the

hypnosis session. Hypnotizability should be a controlling factor. Advanced analysis

tools should be used to characterize the linear and nonlinear dynamics of physiological

changes. An interesting adjunct experiment would be to record physiological changes

from the hypnotist as well and look for synchronisity in physiological parameters as

evidence of psychological rapport.

5.3 Tracking Motor Function Recovery

Analysis of the force following task revealed some insightful variables such as

reaction times, muscle contraction and relaxation rate and force steadiness. These

variables were found to be useful for monitoring motor function recovery in the present

study. The observed changes in muscle contraction and relaxation rate suggest that

muscle tone and spasticity suggest should be measured more directly in future studies.

The stretch reflex could be quantitatively assessed with and without the hypnosis

intervention with established methods [61]. The electromyograph (EMG) could also

provide insight into muscle tone and resolve any questions about the extent of co-

contraction [37].
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The interaction of subjects with a computer as a therapeutic and assessment

device was well received by the subjects. Many expressed a desire to bring such

a device home because it enabled them to focus on performance without the usual

negative associations of watching the impaired extremity. Many variations of the

computer-instrumented hand grip could be designed for therapy and motor function

testing.

5.4 A Framework for Further Study

The framework established for the study of neurorehabilitation with hypnosis in

the present study is to combine motor function testing with functional brain imaging

and dynamic assessment of autonomic nervous system function. The preliminary

conclusions are that hypnosis has an effect on the physical recovery of motor function

and to affect the functional organization of sensorimotor cortex in stroke patients.

Further study will be required to clinically validate these findings.

The results provided insight into the nature of mind-brain-body interactions in the

recovery of motor function. Improvements in imagined movements were found to pre-

cede improvements in physical performance. A modern signal processing algorithm

was presented for the dynamic analysis of heart rate variability statistics. Changes

in autonomic nervous system function reflected in heart rate variability showed sys-

tematic changes during hypnosis. These changes were found to correlate with the

perception of hypnotic depth and with motor performance by stroke patients and

suggest that real-time monitoring of hypnotic depth in the clinical setting may be

possible.
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This framework for studying a clinical application of hypnosis could be extended

to other areas of mind-brain-body interactions. Although the science of these multi-

faceted problems is still in its infancy, the tools are available in biomedical engineering

to greatly advance our understanding.
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