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Abstract.

Annotation and labeling of images are some of the biggest challenges in applying deep learning to medical data.
Current processes are time and cost-intensive and, therefore, a limiting factor for the wide adoption of the technology.
Additionally validating that measured performance improvements are significant is important to select the best model.
In this paper, we demonstrate a method for creating segmentations, a necessary part of a data cleaning for ultrasound
imaging machine learning pipelines. We propose a four-step method to leverage automatically generated training data
and fast human visual checks to improve model accuracy while keeping the time/effort and cost low. We also showcase
running experiments multiple times to allow the usage of statistical analysis. Poor quality automated ground truth data
and quick visual inspections efficiently train an initial base model, which is refined using a small set of more expensive
human-generated ground truth data. The method is demonstrated on a cardiac ultrasound segmentation task, removing
background data, including static PHI. Significance is shown by running the experiments multiple times and using the
student’s t-test on the performance distributions. The initial segmentation accuracy of a simple thresholding algorithm
of 92% was improved to 98%. The performance of models trained on complicated algorithms can be matched or beaten
by pre-training with the poorer performing algorithms and a small quantity of high-quality data. The introduction of
statistic significance analysis for deep learning models helps to validate the performance improvements measured.
The method offers a cost-effective and fast approach to achieving high-accuracy models while minimizing the cost
and effort of acquiring high-quality training data.
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1 Introduction

In recent years, deep learning technology has gained a lot of popularity. While showing remarkable

results, the development process can still be costly and slow. Therefore, research has been focused

on increasing the speed of model training, decreasing the deep learning model sizes, and reducing

the amount of training data required. An early approach was presented by Han et al. in 2016.

They reduced the storage required by AlexNet1 by 35x and the size of VGG-162 by 49x, without

loss of accuracy by using network pruning.3 Frankle and Carbin presented their “Lottery Ticket

Hypothesis” to identify subnets that learn faster than the original network and reach higher test
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accuracies.4 Choi et al. introduced the concept of ”data echoing,” which decreased in wall-clock

time for ResNet-505 on ImageNet6 by a factor of 3.25 when reading training data over a network.7

Besides model training, data labeling is one of the most time-consuming and expensive tasks

when developing supervised deep learning models. For many medical applications, models are

also required to achieve very high accuracy levels. Experts often spend hours annotating images.

Additionally large number of images is need to be labeled before even an initial baseline model

can be trained. Currently, there is also no definition of what encompasses a baseline medical

imaging dataset in terms of adequate data volume and image quality for medical machine learning

problems.8 These labeling challenges limit a wider application of deep learning technology and

make the process of model development long and expensive.

In this paper, we focus on creating a process to reduce the amount of expensive training data

needed to build segmentation masks. This is showcased for single cone ultrasound images, where

it can be leveraged as a removal tool for burned-in patient health data. We present a four-step

method to drastically reduce the amount of high-quality human labels necessary to create accurate

deep learning segmentation models. This is done by leveraging poor quality automatically gener-

ated labels and fast human visual sorting. The process shortens the time for model development

and enables use cases where the generation of high-quality labels is difficult and expensive to ob-

tain. We also showcase that simple algorithms can be improved to match the performance of more

complicated algorithms, thus reducing the necessity to spend a lot of development time on com-

plicated initial segmentation algorithms. The idea of reducing the necessity for large amounts of

expensive training data has previously been addressed by using pre-trained model weights. Many

applications leverage weights trained on large datasets like ImageNet9 and apply them to other

problems in a similar image domain. This method is not justifiable when working with healthcare
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data since most large-scale image datasets don’t contain medical image data. For example, existing

patterns of clear edges and textures and color space gradients that are present in most natural im-

ages are lacking in many medical image types. The impact of this significant domain difference on

the usage of pre-trained weights of large-scale natural image datasets for medical image purposes

is not well characterized.

In our work, we will therefore train our base models from scratch and then refine them with

further training on a small hand segmented ground-truth dataset. R. Barth et al. presented a

similar concept for agricultural segmentation. In that work, a deep learning model was trained on

a synthetic bell pepper image dataset and then was refined for better performance with additional

training on a small hand segmented real-world image dataset.10 In contrast to R. Barth et al.,

the time-intensive creation of synthetic images will be replaced by exploiting computer vision

algorithms of varying complexity and a fast manual sorting to create a training set for a base

model. In total, this method enables a quick and inexpensive (in both human and computational

costs) way of creating deep learning training data.

The described approach in this paper can be used as a precursor to other Machine Learning ap-

proaches. The masking of medial image data also helps to remove fiducials and other background

objects. Those pose the risk of creating prediction biases which can have catastrophic outcomes for

medical deep learning models if deployed in a clinical setting. Data preparation and preprocessing

are, therefore, among the most critical tasks to ensure unbiased training data. Often it is not pos-

sible to receive raw image data without features that would indicate the image source. Examples

are manufacturer logos, product names, specific locations of saturation bars, visual trackers, and

PHI data like patient name or age that are overlaying the image data. When training deep learn-

ing models on datasets containing multiple data sources, visual indicators in the data like this can
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Fig 1 (a): The input image containing non-echo clutter, including potential PHI information, (b): A binary mask,
only containing ultrasound image data, (c): The input image without any potential bias and PHI, after the mask was
applied.

cause strong model biases and therefore need to be addressed.

In this work, the cardiac ultrasound background removal task will be used to showcase our

method. The presented concepts can also be applied to fetal and other single cone ultrasound

image data. In clinical ultrasound images, static and dynamic elements like patient information,

saturation bars, EKG, or patient information are combined in one frame with the ultrasound data

(Fig. 1, a). Due to this bias, cone segmentation is a necessary preprocessing step for deep learning

models on ultrasound data. To do this, we create and apply a binary mask (Fig. 1, b) to the input

image (Fig. 1, c). The training sets for the base models will be generated using computer vision

algorithms of varying complexity, to compare how their performance improves using the presented

method. Expensive hand segmented data is only used for the model refinement step.

2 Methods

2.1 Data Collection

The dataset for this paper came from Children’s Hospital Boston and the Pediatric Heart Network.

It consists of 1,666 cardiac sequences collected from children’s hospitals across the US. Each

sequence consists of 10 - 120 frames and shows at least one heartbeat. The frames are provided
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Fig 2 A few example frames of different heartbeat sequences, showing the variation in rotation, scale, and structure
included in the dataset.

in the Portable Network Graphics (PNG) format with no segmentation or labeling. Within the

sequences, the ultrasound cones vary in scale, location, rotation, and saturation. Some cones are

occluded or cut off, and in some sequences, background objects (static and dynamic) overlay the

cone structure. The image sequences come in 7 different sizes and vary between a maximum of

800 x 600 pixels and a minimum of 480 x 430 pixels. A few selected images are in Fig. 2.

2.2 The Model Refinement Method

Our model refinement method consists of four steps. In the first step, we create initial training

masks using computer vision to segment the ultrasound cones. We hypothesize that the output of

those masking algorithms can be used to train mediocre-performing base models, which can be

refined to a better accuracy using a small set of expensive hand-segmented data. In the process,

the variance between simpler and more complex initial computer vision segmentation algorithms

is reduced. The advantage of this refinement approach is that it saves effort on computer vision

algorithm development, ground truth generation, or both. In this work, the performance of a simple

thresholding, a filled thresholding and a convex hull algorithm will be used to train three base

models. A test set of 33 images is randomly selected out of the dataset. The images are hand
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segmented to create a ground truth test set, which is representative of the entire dataset (Labeled:

Representative Testset). This set will be used to evaluate the model accuracies, and a subset will

be used to perform the refinement step. The second step is a fast manual quality sorting of the

label masks. Manual sorting utilizes the efficiency of the human visual system to distinguish

between good and bad segmentation results. Simple in/out sorting by hand is much faster than

hand segmentation. The images classified as good in the visual check are then used as the training

set for the base models. From images classified as bad during manual sorting, another test set of

33 different random images is selected. These images are hand segmented to create a test set of

only bad images (Labeled: Bad Mask Testset). This set allows model evaluation on cases where

the automated segmentation of the computer vision algorithms failed. In the third step, the masks

classified as good are used to train base models. The performance of those models on the test sets

allows a comparison of the model improvements using our proposed method. In the final fourth

step, a subset of the hand segmented ”Representative Testset” images is used to refine the base

models. The final model performance evaluations come from evaluating them on the ”Bad Mask

Testset” set. Figure 3 shows the entire refining method. We run the modeling experiments six

times and propose to leverage statistical analysis on the resulting model performance distributions

to receive measures of experiment significance.

2.3 Results

2.3.1 Dataset creation using computer vision algorithms

We used different computer vision algorithms to create three initial unsorted training datasets. To

remove static background objects, we leverage the sequential nature of the given images. By sub-

tracting subsequent frames, only image parts containing changes are kept. N frames of a sequence
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Fig 3 The full model refinement method.

(Fig. 4, a) therefore generate N-1 difference images. Those can then be combined into a single

image by calculating the mean (Fig. 4, b) over the N-1 resulting difference images. This mean

difference image is then used as a base to sequentially create the three masking types used for the

performance comparison in this paper. The simplest segmentation mask is obtained by applying

an adaptive threshold on the base image (Fig. 4, c). Since it was created with the combined mean

image, the mask is valid for the whole image sequence. In a next step, a flood fill algorithm is

applied to the thresholding mask. This results in a mask, where holes in the structure are closed,

and the more accurate ”filled threshold” mask (Fig. 4, d) is created. In the final step a convex

hull algorithm is applied, achieving an even better result (Fig. 4, e). These steps are performed on

the entire dataset, creating a set of segmentation masks for base model training. This is relatively

low-cost since a hand segmentation or creation of synthetic ultrasound images is not necessary.

By applying the same computer vision algorithm to the ”Representative Testset,” an initial perfor-

mance of 91.87% for the thresholding masks, 95.74% for the filled thresholding masks and 97.24%

for the hull masks can be calculated. The accuracy is defined as the sum of all True Positive (TP)

and True Negative (TN) pixels divided by the number of pixels in the image.
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Fig 4 The pipeline to create the training masks, (a): n raw cardiac frames, (b): the mean of n-1 difference images,
(c): adaptive thresholding creating a binary mask, (d) the masks after applying a flood fill algorithm, (e) the mask after
applying a convex hull algorithm

2.3.2 Manual sorting of images

Sorting leverages the human visual assessment by categorizing all masks into two categories.

Masks that cover the majority of the ultrasound cone are considered good and added to the training

set. Masks that include parts of the background or the masked region that miss a lot of the ultra-

sound cone are regarded as failures of the automated segmentation and are removed. The manual

assessment proved to be much faster than the creation of hand-segmented ground truth masks or

synthetic ultrasound data while still leveraging human decision capabilities. Hand segmenting a

single image takes on average three minutes and is, therefore, more time-intensive. For the whole

1666 images, 4998 minutes or 83.3 hours of manual segmentation would be required. By compar-

ison, the in/out sorting for the masks created by the computer vision algorithm on the full dataset

was performed in less than 20 minutes. After sorting, 602 masks of the sequences were classified

as good and kept as the training set for the base models, which is only 37% of the initial dataset.
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Therefore 63% of the segmentations created using traditional computer vision algorithms failed

the visual assessment.

2.3.3 Training of base models

Training of the base models was performed using the set without bad masks. We choose the U-Net

structure11 as a model architecture. It is a convolutional network designed for biomedical image

segmentation. It consists of a contracting path and an expansive path, resulting in a u-shaped

structure. Our experiments ran on the Harvard FAS Research Computing cluster using 4 GPUs

with a 32GB memory pool for all cores. The training uses a mean squared error Adam optimizer12

with a learning rate of 1e-5 and a batch size of 8 images. We reserved twenty percent of the input

data for validation, and the image sizes are 256x256 pixels. Since there is only one mask per

sequence, multiple images of each sequence could be used to train with the same mask. We chose

ten random frames of each sequence, each of which used its corresponding mask for the model

training. The learning curve is evaluated on the hand segmented ”Representative Testset” every

10th epoch step. The experiment ran six times, choosing a different set of ten random frames per

sequence for each run. This allows to apply statistical significance calculations by comparing the

model performance distributions of the runs. The curves show the mean accuracy and the variance

over the six runs for the three input mask types. Figure 5 shows the training accuracy and variance

of the base models evaluated on the test set. The variance of the six model runs is high in the

beginning but gets smaller after more training epochs. The accuracy reaches an average of 94.99%

for the thresholding, 97.71% for the filled thresholding, and 98.49% for the hull masks after 100

epochs. This is an increase of 3.12%, 1.97%, and 1.25% respectively compared to the computer

vision-based algorithms. This also shows that there is still a large variance with a performance
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difference of 3.5% between the simplest computer vision thresholding input masks and the more

sophisticated convex hull input masks. We hypothesized that the performance could be further

improved whilst also reducing this input mask-dependent performance variance.

Fig 5 Mean training accuracy and variance of the base models every ten epochs evaluated on the ”Representative
Testset”. Upper row: the threshold model, lower row left: the filled threshold model, lower row right: the hull model
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2.3.4 Model refinement with hand segmented dataset

The performance of the base models already showed some improvement over the computer vision

algorithms. Our hypothesis for the model refinement was that a small accurate hand segmented

dataset could be used to improve the performance even further. The validation should be shown

by performing a stastistical analysis on the performance distribution of the multiple training runs.

The concept would enable simpler computer vision algorithms to achieve accuracies on the level of

more complex algorithms or more significant amounts of expensive training data. The idea is to use

a part of a test set to refine the base models while evaluating the new model with the remaining test

set. Therefore the ”Representative Testset” is divided into three parts; two-thirds refine the base

models through additional training while one-third provide an evaluation of the performance. This

is repeated for all three possible combinations (1st fold, 2nd fold, and 3rd fold). Every experiment

is run six times trained on different random frames, creating a mean and variance over the training

epochs. The results can be seen in Fig. 6. Since ten frames come from each sequence, each training

set contains 220 training cases, with 20% used for validation and 110 test cases to evaluate the per-

formance. This also allows comparing two models by calculating the p-value, as described by the

student t-test,13 using the six runs of each model. The mean accuracies and 95% confidence inter-

vals of the base model and three refinements can be seen in Table 1. When evaluating the statistical

significance of the performance between two models, a Holm-Bonferroni correction is applied to

control for the family-wise error rate. All improvements over the base model are significant if

the sorted p-values are smaller than the respective αHolm−Bonferroni value. The αHolm−Bonferroni

comparison values for those experiments are 8.3e-03, 1.00e-02, 1.25e-02, 1.67e-02, 2.50e-02 and

5.00e-02 respectively and comparisons that fulfill the statistical significance criteria are marked
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with an asterisk. The results can be seen in (Table 2). The average accuracy of the refined models

outperforms the base models for all cases, besides the third refinement of the hull mask. And all

measured changes, besides the third refinement of the filled threshold, are statistically significant

with p-values below the respective αHolm−Bonferroni. Overall it can be seen that the difference

between the initial computer vision masking algorithms is largely reduced when comparing the

refinement models. The initial accuracy difference of 3.5% between the threshold and hull base

models is reduced to below 1% for all folds and only 0.15% for the second refinement. This shows

that the refinement method enables using simpler computer vision algorithms with less time of

development to achieve similar performance accuracies as more complex methods.

Table 1 Average model accuracies (n=6) and 95% confidence intervals

Threshold Filled Threshold Hull
Model mean acc 95% confid. mean acc 95% confid. mean acc 95% confid.
Base 94.99 (94.58, 95.41) 97.71 (97.68, 97.75) 98.49 (98.44, 98.54)

1st ref. 98.14 (98.09, 98.2) 98.47 (98.41, 98.54) 98.7 (98.62, 98.78)
2nd ref. 98.87 (98.84, 98.9) 98.93 (98.92, 98.95) 99.02 (98.97, 99.06)
3rd ref. 97.6 (97.49, 97.71) 97.78 (97.67, 97.9) 98.28 (98.2, 98.36)

Table 2 Statistical significance evaluation of the different models.

Model Comparison Threshold Filled Threshold Hull
Base vs. 1st ref. <1e-08* <1e-08* 1.58e-04*
Base vs. 2nd ref. <1e-08* <1e-08* <1e-08*
Base vs. 3rd ref. 2.22e-08* 1.9e-01 2.12e-04*

1st ref. vs. 2nd ref. <1e-08* <1e-08* 4.0e-06*
1st ref. vs. 3rd ref. 4.81e-07* 1.00e-07* 2.42e-06*
2nd ref. vs. 3rd ref. <1e-08* <1e-08* <1e-08*
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Fig 6 Mean training accuracy and variance of the base models and the three refinement splits every ten epochs
evaluated on the ”Representative Testset”. Upper row: the threshold model, lower row left: the filled threshold model,
lower row right: the hull model

2.3.5 Evaluation on the bad image test set

We evaluated the deep learning models on the images where the automated segmentation failed to

produce acceptable results. For this, the “Bad Mask Testset” set was used; it consists of 33 images

that were classified as bad in the second step of the refinement method (Fig. 3). Again, ten frames

of each sequence are randomly selected, creating a bad image test set of 330 images. Then the
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base model and refined models are evaluated against it.

The overall performance is good, considering that the dataset only contains images that were

initially segmented poorly. The base models achieve an average accuracy of 93.16% for the thresh-

old model, 96.32% for the filled threshold model, and 97.93% for the hull model (Table 3). All

refinement models, besides the third hull refinement, show an even higher accuracy. The 2nd

fold refinement models achieve the highest average accuracy of 97.56% for the threshold model,

97.78% for the filled threshold model, and 98.13% for the hull model. When evaluating the statis-

tical significance, all improvements over the base model are significant for the threshold and filled

threshold models. For the hull model, the improvement of the second refinement is statistically

significant under the Holm-Bonferroni correction (Table 4). Again it can be seen that the differ-

ence between the initial computer vision masking algorithms is largely reduced when comparing

the refinement models. The initial accuracy difference of 4.77% between the threshold and hull

base models is reduced to below 1% for all folds and only 0.57% for the second refinement.

Table 3 Average model accuracies (n=6) and 95% confidence intervals on the ”Bad Mask Testset”

Threshold Filled Threshold Hull
Model mean acc 95% confid. mean acc 95% confid. mean acc 95% confid.
Base 93.16 (92.69, 93.63) 96.32 (96.2, 96.45) 97.93 (97.8, 98.06)

1st ref. 97.18 (97.11, 97.25) 97.51 (97.45, 97.58) 98.02 (97.94, 98.1)
2nd ref. 97.56 (97.48, 97.64) 97.78 (97.7, 97.86) 98.13 (98.06, 98.2)
3rd ref. 96.91 (96.75, 97.08) 97.23 (97.12, 97.35) 97.8 (97.69, 97.92)

2.3.6 Visual evaluation for image de-identification

In order to assess the ability of the models to remove text, fiducials, and other background data

from the input images, the model-generated segmentation masks were also visually assessed. An

image that still contained visible text or potential non-ultrasound PHI should be counted as a failed
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Table 4 Statistical significance evaluation of the different models.

Model Comparison Threshold Filled Threshold Hull
Base vs. 1st ref. <1e-08* <1e-08* 1.53e-01
Base vs. 2nd ref. <1e-08* <1e-08* 5.06e-03*
Base vs. 3rd ref. <1e-08* 6.95e-08* 9.21e-02

1st ref. vs. 2nd ref. 4.42e-06* 5.94e-05* 4.0e-06*
1st ref. vs. 3rd ref. 2.9e-03* 2.70e-04* 1.95e-02
2nd ref. vs. 3rd ref. 3.48e-06* 1.37e-06* 8.08e-05*

image de-identification. An image that only contains ultrasound data and shows no visible text or

potential PHI after the segmentation, independent of the quality of the segmentation itself, should

be counted as a successful image de-identification.

In the visual background removal assessment on the ”Bad Mask Testset”, all models (Base

model, 1st, 2nd, and 3rd refinement) performed equally well. The successfully de-identified 320

frames from burned-in text and potential PHI data. An example of a successful de-identification

can be seen in Fig. 7. All models also failed on the same ultrasound sequence and all of its’ 10

frames. A sample frame of this sequence can be seen in Fig. 8. The models, therefore, achieve a

de-identification accuracy of 96.97%, segmenting 320 frames out of 330 correctly. The observed

pixel errors all came from dynamic components like EKG. They are therefore unlikely to be PHI,

but could still be a potential source of bias when training deep learning models.

3 Discussion

The four-step model refinement method presented in this paper demonstrates a simple and cost-

efficient way of increasing segmentation model accuracies. In addition to working well on good

quality images, it also improved performance and achieve good accuracies on images that were

classified as failures for the computer vision algorithms in the visual check. All refinement model

folds, besides the third hull fold, showed a better mean performance, than the base models. This
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Fig 7 Example of a successful de-identification (2nd refinement): (a): raw cardiac input frame including multiple
burned-in text locations, (b): model generated segmentation mask (c): de-identified masked image.

Fig 8 Example of a failed de-identification (2nd refinement): (a): raw cardiac input frame including a cluttered moving
EKG line (b): model generated segmentation mask (c): masked image including the EKG line.

shows that the method is most effective when the user is limited to low accuracy input training

masks. With better initial computer vision algorithm performance the method will experience di-

minishing returns. The presented concept of running deep learning experiments multiple times in

order to apply statistical calculations for better experiment evaluation proved to be a valuable tool.

In the shown use-case all performance differences, besides the third fold of the filled threshold,

are statistically significant. A reason why this fold is significantly different from the others could

be that due to the small number of only 22 images used for the refinement, a bad sample would

have a substantial negative impact on the performance. More similar results across the folds could
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Fig 9 Comparison of the mean error rates for the computer vision algorithms, base models, and refinement models on
the three mask types.

probably be achieved by increasing the number of samples. To show the effectiveness of the pro-

posed refinement process to reduce the necessity to develop complex computer vision algorithms

three masking types were compared. The mean error rates (Fig. 9) show that the performance of

the refined models is much more similar than before. The difference between the refined threshold

model and the refined hull model is reduced to only 0.15% for the second split from an initial

5.37% in the computer vision performance. This shows that even simple initial training masks,

like the threshold mask, can achieve similar results to a more complex input like the hull masks

when using model refinement.

There is again a difference in performance between the different refinement folds since the

same number of 22 refinement images was used. Therefore, for all models, a bad label in one of

the folds would have a strong negative effect on the performance. This would also align with the

overall result of the refined models, as the third split performs worst for all mask types. The effect

may be reducible by using a larger dataset to refine the base model. But the differences between the

refined models in all folds are much smaller than the initial differences of the base models or the
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computer vision models, therefore proving the huge improvements due to the proposed refinement

process.

When evaluating the refined models for their capability to remove text, biasing fiducials, and

potential PHI background data in ultrasound images, the method showed excellent results. All

models showed great ability to identify the location of the ultrasound cones within the image, only

varying in the accuracy of matching the exact shape of the cone. This results in nearly all models

being able to separate echo data from the background. All models failed to segment the same

testing ultrasound sequence on all ten frames, which included a dynamic EKG. Since the test set

is small with only 33 image sequences, this resulted in a noticeable reduction in accuracy for all

models. It should therefore be analyzed in future work if the accuracy could be even higher when

adding more training samples including dynamic background objects and evaluating the models

on a larger test set. The presented de-identification approach is limited though to use-cases where

all background data can be removed, and there is no additional value and risk for model bias in

keeping non-PHI information burned into the pixel data. For applications where text data needs to

be retained in the image, there is still a need for a more targeted approach.

4 Conclusion

The results show that the refinement method of training a base model on low-quality automated

segmentations and then refining the model on a small number of hand segmented data increases

the model performance. By using multiple experimental runs to calculate a p-value, we showed

the statistical significance of model improvements. The experiments showed most improvements

on rudimentary low-quality input masks and diminishing returns on already well-performing input

masks. In our experiments, the differences between more and less sophisticated training masks

18



were reduced by using the refinement method. This shows that this approach reduces the neces-

sity for a large dataset of high-accuracy segmentation masks by utilizing a small accurate dataset

only to refine model performance. In our experiments, a difference between the experiment folds

remained, but this could be due to the small number of 22 ground truth images that were used to

refine the models. We have shown that the utilization of deep learning achieves good performances

even in cases where the initial computer vision algorithms fail. The proposed method proved to be

a great way to leverage deep learning models. The concept applies to many single cone ultrasound

segmentation tasks, where labeling ground truth data is expensive, and human evaluation of auto-

mated labels can be fast. For those, the presented experiments also showcase an easy and robust

method of removing static text and biasing fiducials, including potential PHI data. The presented

approach of running experiments multiple times to allow statistical analysis of the performance

improvements, is a useful tool in validating results. If the increased computation costs are not a

critical limitation, this enables a more informed way of comparing deep learning experiments.
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