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Abstract— Reliable grasping and manipulation for de-
formable objects require accurate contact modeling and grasp
stability estimation. One key component in contact modeling
and stability estimation is the coefficient of friction, which
is typically estimated as a standard single value from the
literature, even though its actual values are variable and
depend on many factors, such as compliance and contact
velocity, especially for deformable objects. These factors are
often overlooked in the applications of analytical grasp models
as well as machine learning methods. Here we compare the
coefficient of friction of objects with different compliance
but identical materials (thicker/multi-layered vs. thinner/single-
layered) at varying contact velocity, using a highly instrumented
robot hand and vision-based tracking on both the robot hand
and the object. The results show that compliance, as well as
contact velocity, affect the coefficient of friction and stability
estimation using grasp analysis. These findings suggest that
reliable grasping and manipulation, whether from analytical
grasp models or machine learning methods, require the ability
to sense friction. This also implies that machine learning
methods will require inputs from friction sensing. Without
friction sensing capabilities, robotic grasping and manipulation
are constrained to a much narrower range of objects.

I. INTRODUCTION

Reliability is a central challenge for grasping in un-
structured environments. A key example is kitchens, where
dropped objects can cause expensive food waste and dif-
ficult cleanup tasks. The challenge is compounded with
conformable objects, which entail deformation due to contact
and gravity, difficult estimation of the object state, and
modeling limitations due to unknown mechanical properties.

Reliable grasping requires the ability to predict grasp
stability. Grasp analysis (e.g. [1]) can determine stability, but
requires an accurate estimate of the coefficient of friction at
contact. When the estimate is too conservative, it results in
excess force and potential damage to the object; when it’s
too relaxed, it will result in unstable grasps. Incorrect esti-
mates also lead to failures of in-hand sliding manipulation.
Typically, the coefficient of friction is estimated as a standard
value from the literature. Actual values, however, are variable
and depend on many factors such as the materials in contact,
pressure or load, temperature, and contact velocity [2].

Recently, much research has focused on machine learning
methods in grasping and manipulation, particularly to handle
the nonlinear behavior of compliant interaction [3], [4], [5],
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Fig. 1. (A) Components of the system. (B) The stroking experiment: each

finger touches the object, sliding up and down in a repeated motion. (C)
The grasp-lift-slip experiment: the object is grasped then slowly lifted until
external force is applied via a string looped under the table, causing the
object to slowly slip out of the robot hand.

[6], [7], [8], [9]. It is important to provide the necessary in-
puts for machine learning methods to successfully distinguish
the nuanced differences in such contact-rich environment.

This work identifies some of these key inputs that tend
to be overlooked. Using a highly-instrumented robot hand,
objects with different compliance but identical materials
(thicker/multi-layered vs. thinner/single-layered) are grasped
and lifted, then pulled from the grasp. The results demon-
strate that compliance as well as contact velocity affect the
coefficient of friction as well as stability estimation using
grasp analysis.

II. METHODS

The experiments use a modified tendon-driven three-
fingered robot hand (Reflex Hand, RightHand Robotics).
The custom-designed fingers have joint encoders on both
proximal and distal joints. Each fingertip is equipped with a
high precision force/torque sensor (ATI Nanol7. Resolution:
1/160 N, 1/32 Nmm). The hand is mounted on a robot arm
(Universal Robot UR-5) and a high precision optical tracking
system (Atracsys Fusion Track 500, Resolution: 0.090 mm
RMS) measures the pose of each fingertip as well as the base
of the hand and the grasped object.

The base object is a cube with mounting sites that allow
different materials to be attached to the sides. Here we
consider two materials: a very soft silicone rubber (Smooth-
on Ecoflex 00-10) and natural cotton canvas. Each material
has two configurations: stiff and soft. For rubber, the stiff
sample is spin-coated in a thin layer on a rigid plate and the
soft sample is molded into a 13 mm thick pad. For canvas,
the stiff sample is a single layer sewed onto rigid plastic



plate, and the soft sample is multiple layers directly rolled
onto the object and lightly tied by cotton yarn.

A. Experimental Setup

For each object, we conduct two experiments. The first
is a stroking experiment to study the coefficient of friction
with respect to contact velocity. We lightly close the robot
hand and repeatedly slide the fingers along the side of the
object without lifting it at varying speeds. The second is
a grasp-slide-drop experiment to examine the estimation of
grasp stability using grasp analysis. A string is attached to
the bottom of the object and looped under the table top
(Figure 1). The object is slowly lifted until the string goes
taut, then the object slides between the fingers until it is
pulled out of the hand.

III. RESULTS
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Fig. 2. (A) Typical distribution of coefficient of friction (ratio of tangential
to normal force during sliding) versus sliding velocity (canvas stiff case).
(B) Trends of coefficient of friction with respect to contact velocity for
the four object cases. (C) Soft cases have far fewer outliers and a wider
distribution.

A. Coefficient of friction varies with contact velocity

The results demonstrate that the coefficient of friction is
often, although not always, a function of contact velocity.
Figure 2(A) shows a typical stroking experiment. Each
instance in time is plotted as a grey point. Here we divided
the data points into bins of 0.01 m/s. In each bin, we
calculate the mean values and standard errors for contact
velocity and coefficient of friction and the results are shown
in blue, together with a linear fit. Figure 2(B) shows that for
cotton canvas both cases and rubber stiff case, the coefficient
of friction increases as contact velocity goes up, while it
remains roughly constant for the rubber soft case.

B. Softer leads to cleaner signals and better slip estimates

Figure 2(C) shows the distribution of the coefficient of
friction across all velocities for all four cases. For both
materials, the soft and stiff cases have different means and

distribution widths, with the higher mean value for the stiff
case with canvas and the soft case for rubber. Although the
inter-quartile range is somewhat larger for both soft cases,
soft has far fewer outliers and they span a much smaller
range than for the stiff cases.
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Fig. 3. Grasp analysis results for the rubber cases. Epsilon is a metric of
grasp stability that goes to zero at the onset of object slip [1]. The blue,
yellow, red lines are when the object first starts to slip, the first finger loses
contact, and the object completely drops out of the robot hand, respectively.

We applied grasp analysis to all four cases using the me-
dian value from Figure 2(C). Figure 3 shows grasp stability
estimation of the rubber cases using the epsilon metric from
grasp analysis [1]. A negative epsilon value indicates that the
grasp is secure, and an epsilon of zero indicates slip. Here we
see that the stability estimation is cleaner and more accurate
in the soft case. When the object is slipping during three-
fingered grasp, the stiff case shows considerable variability
in epsilon while the soft case is a constant zero for epsilon,
correctly indicating an insecure grasp.

IV. DISCUSSION

In general, effective grasping depends on friction to gen-
erate stabilizing forces. Unfortunately, friction is a complex
phenomenon, and as these results demonstrate, friction for
compliant materials friction varies greatly depending on
materials, temperature, load and pressure, slip velocity, and
other parameters [2]. Without the ability to sense friction (or
at least the main parameters that influence it), the results pre-
sented here suggest that grasp stability predictions, whether
from analytical grasp models or from machine learning
methods, will be unreliable (Figure 3). This implies that
machine learning methods will require inputs from contact
sensors that directly sense friction [10]. Alternatively, it may
be possible to use conventional tactile sensors to lightly slide
against the object surface at the start of the grasping process
to estimate friction. This is similar to the capabilities of
human fingers, which possess sophisticated mechanoreceptor
nerve endings that allow the central nervous system to
quickly estimate friction during the first fraction of a second
after the fingertip makes contact [11]. Without such sensing
capabilities, robots will be constrained to use grasps that
minimize dependence on frictional forces, which will greatly
restrict the range of objects that can be reliably grasped[12].
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