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Modeling the Effects of Contact Sensor Resolution
on Grasp Success
Qian Wan1, and Robert D. Howe1,2

Abstract—This paper presents a quantitative method for ana-
lyzing the effect of sensor resolution on grasp stability prediction.
Resolution limits for contact sensors are expressed as a range
of contact locations and contact surface normals that cannot
be disambiguated by the sensor. Grasp quality is assessed at
the limits of this range to determine whether the uncertainties
caused by sensor resolution lead to uncertainty in grasp outcome
prediction. The analysis also enables calculation of the specific
contact locations on an object where the tactile sensors are
trustworthy and where the object is reliably graspable. Our
approach lays the foundation for quantitative evaluation in design
tradeoffs in sensor choices and sensor layout, as well as finger
shapes and materials.

Index Terms—Grasping, Force and Tactile Sensing, Perception
for Grasping and Manipulation

I. INTRODUCTION

TACTILE sensors are crucial for providing feedback at
the contact during grasping and manipulation tasks. The

quality of these sensors has direct impact on the effectiveness
of the signals and ultimately the task performance. Inevitably
all sensors have limitations, such as limited range of coverage,
sensitivity, and resolution. Understanding how these limita-
tions effect task performance is crucial for achieving desired
performance.

Take the task of predicting grasp stability as an exam-
ple: Highly reliable grasping is essential in many real-world
robotics applications. A household robot that achieves only
99.9% success in grasping will still drop many objects each
week, making it unacceptable for most potential users. As-
sessing the stability of a grasp before the object is lifted is
key to avoiding the costly outcome of dropping the object.
Making that assessment reliable enough to meet the demand-
ing requirement for commercial products will likely push the
current sensor technology limits. However, little has been done
to investigate the effect of tactile sensor’s limitations on the
robot’s ability to evaluate grasp stability.

In this paper, we examine the effect of contact sensor’s
spatial resolution on grasp stability prediction, and develop a
method that produces a quantitative relationship between the
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Fig. 1: Robot hand using two-fingered pinch grasp. With a
moderate coefficient of friction objects 1 and 2 can both be
stably grasped. If, however, the contact sensors in the robot
fingertip lack sufficient resolution, then the surface normal
direction for object 2 may be so uncertain that grasp stability
cannot be reliably predicted.

spatial resolution of the sensors and the reliability of the grasp
stability prediction.

In theory, there are many well-developed analytical methods
for predicting grasp stability [1], [2]. Most involve determining
whether the forces exerted on the object by the fingers,
the environment (particularly gravity), and the task are in
equilibrium. For simple lifting tasks using fingertip precision
grasps, stability can be calculated from contact locations,
object surface normals or forces, coefficient of friction, the
object’s mass, and center of mass.

The implementation of these theories usually calls for
perfect sensing, which is never the case in the real world. Real
sensors have limitations such as finite spatial resolution, in-
herent sensor noise, and bounded sensitivity. These limitations
can lead to uncertainties in the parameters used for calculating
grasp stability, which eventually can compromise the stability
prediction (Fig.1). Understanding how sensor uncertainties
propagate through the prediction algorithm is key in knowing
the reliability of the predictions. It will also help identifying
the sensor improvements needed to reach desired performance.

Using grasp theory as a guide, we will relate the tactile
sensors’ spatial resolution limitation to uncertainties in contact
surface normal and location — parameters that are essential
in calculating the force and moment equilibrium of a grasp —
and draw quantitative conclusions regarding the accuracy of
stability prediction as a function of tactile sensor resolution.

Our analysis provides, for the first time, a quantitative
relationship between a tactile sensor quality parameter (spatial
resolution) and performance in grasping and manipulation
tasks. The insights gained here can be used to improve both
physics-based and data-based stability prediction, hand and
sensor design, control, and planning. While we focused on



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2018

Fig. 2: Examples of integrated tactile sensors on robotic
fingers. (A) Tactile array for the Schunk Hand [3], (B)
Conductive fluid-filled multimodal fingertip sensor [4] (C)
Baraometer-based tactile array on a Reflex Hand finger [5].

spatial resolution, the same procedures can also be applied
to other sensor specifications, such as sensitivity and noise.
It could also be extended to other modes of sensors, such as
kinematic sensors.

We begin by reviewing the models for tactile sensing and
grasp stability. We lay out the relationship between sensor
resolution and stability prediction accuracy in section III, and
discuss the implication of our analysis in Section IV.

II. MODELS

We used classic grasp theory to guide our investigation into
the relationship between tactile sensor spatial resolution and
grasp stability. In this section, we describe the contact model
and the physical theory that underlies our analysis, as well as
the model used to parameterize the sensors and their spatial
resolution.

A. Grasp Contact and Success Model

Many models of grasping mechanics and metrics for grasp
quality have been proposed [1], [2], and most could be
employed for the purposes of the present analysis. We will
follow the widely-cited analysis by Ferrari and Canny [6],
which assumes that all contacts are point-contact-with-friction.
While this contact model may not be the most accurate for
many fingers, it is the most conservative choice for the many
tactile sensors that cannot reliably differentiate a point-contact
and a soft-contact.

Let the force exerted at the i th contact be Fi , then all the
forces that do not cause slip form a friction cone. The friction
cone is defined by a normal force fn in the local surface
normal direction ni and an orthogonal tangential force ft,
where ft 6 µfn, with µ being the coefficient of friction.
The same friction cone can also be written as a convex linear
combination of a set of edge vectors fj’s so that the friction

Fig. 3: (A) The point-contact-with-friction model for grasp
quality estimation. The force that can be exerted without
slipping by each contact is contained within a friction cone.
(B) Friction cone is defined by the normal force vector fn
and coefficient of friction µ , but can be approximated by a
polygon defined by convex combinations of vectors fj .

cone is approximated by a polygon (Fig.3). Using a total of
m vectors to span the possible force at contact i allows the
force to be expressed as

Fi =

m∑
j=1

ci,jfi,j

where weights ci,j > 0 and the total force is normalized to
express the actuation limit, so that

∑m
j=1 ci,j 6 1.

The corresponding wrench is

ωi = (Fi , τi)
T

where with ri is the moment arm for contact i,

τi =

m∑
j=1

ci,j(ri × fi,j)

The reference point around which moments are calculated
can be arbitrarily selected. One convenient choice is the center
of mass (COM) of the object, so that gravity force do not
produce additional torque in the system.

Solving for the wrench equilibrium of any grasp absent task
forces is equivalent to finding a non-trivial solution to

ω =

n∑
i=1

ciωi = 0 ci > 0

This is equivalent to determining if the origin is inside or
on the surface of the convex hull, G

G = ConvexHull(

n⊕
i=1

{ωi,1, ...ωi,m})

Grasp quality ε is defined as the distance from origin to the
closest hyperplane of the convex hull. It can be thought of
as the minimum amount of perturbation required to push the
object out of the fingers. The wrench equilibrium exists and
the grasp is stable if G contains the origin. If the solution is
on the surface of the hull, then it will have ε = 0, which will
be defined as unstable under this particular definition. See [6]
for further details.
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This model aims to determine whether a stable grasp is
possible at the configurations and contacts [6]. It assumes
necessary actuation forces can be generated as needed and
does not account for finger kinematics limitations. Different
contact and stability models can be substituted, and task forces
and kinematic constrains can all be added to suit specific
systems and tasks.

B. Sensor Model

There are numerous tactile sensor designs using a variety of
transducers and measuring many features of contacts (Fig.2)
[7], [8]. Of all the parameters needed to calculate grasp stabil-
ity according to the model described in the previous section,
we will focus on sensors that provide contact location and
local surface normals estimates. Sensors and algorithms for
estimating parameters such as friction, mass, and COM are an
important open question but are usually distinct from contact
sensors that report spatial and geometric information. We will
assume these parameters will be measured independently. The
effect of uncertainty of those parameters are discussed in
section IV.

Regardless of design and algorithm details, most sensors
have a spatial resolution limit, where contacts within that limit
cannot be distinguished from each other. Determining the exact
resolution of the sensors depends on the sensing mechanism
and signal processing algorithm. For example, some sensor
arrays overlap the receptive field of individual sensors, so that
the overall spatial resolution is subtaxel [9]. In some fluid-
filled sensors, the relationship between the signal and contact
location is a highly nonlinear function of how much fluid has
been displaced between the electrodes [10]. However, despite
having completely different sensing mechanisms and signal
processing algorithms, as long as there exists a region on the
receptive surface where small variation in contacts cannot be
disambiguated, then the following analysis is applicable.

We will define the sensor spatial resolution as α, which
represents the angle difference between the two extreme pos-
sible surface normal vectors within an unit resolution segment
(Fig. 4). Contact anywhere on the arc covered by α will
result in the same estimates. Consequently, if the sensors
estimate a particular segment to be active, then the average
surface normal and location of that segment will be used for
subsequent calculations, even though the true surface normal
vector can be anywhere on that segment and may be rotated
up to ±α/2 from the reported normal. The limited spatial
resolution effectively quantizes the signals and attaches an
uncertainty range for any signal received.

As long as the contact sensor’s spatial resolution is known,
the same definition above can be applied to fingers regardless
of material, shape, and sensor layout. For example, many
robotic fingers have rubber-like fingerpads that conform to the
contact surface as a function of the magnitude and direction of
force exerted and the properties of the material. Soft contacts
can resist higher friction force and moment, and this behavior
can be taken into account in signal processing, often using
mechanical models, to estimate contact location and surface
normals [11]. Additionally, α depends heavily on the curvature

Fig. 4: The sensor resolution is described by a segment of an
active area that extends over angle α, where contacts on the
arc covered by α cannot be differentiated. The actual contact
surface normal can differ from the estimated normal vector by
as much as α/2, and the contact location can vary up to half
of the length of the receptive field.

of the contact surface. Sensors of the same receptive field
size but facing a flatter contact surface will have a smaller
α, and the corresponding finger will have a finer resolu-
tion. Regardless, most sensors will likely have a quantifiable
spatial resolution limitation that translates to uncertainties in
perceived surface normal vector and contact location. In the
following section we will show how uncertainties in these
parameters can produce uncertainties in orientation and apex
angles of friction cones, which propagate into uncertainty in
grasp stability calculation.

III. ANALYSIS

A. Stability Prediction Uncertainty Analysis

In the sensor model described in section II-B, the boundary
between slip and stable forces is represented by a friction
cone. The coefficient of friction, µ, dictates the apex angle
of the friction cone, 2β, where β = tan−1µ; the surface
normal vector determines the orientation of the friction cone. A
sensor that has resolution angle of α can result in a perceived
normal rotated up to α/2 from the true normal direction.
The uncertainty in contact location due to spatial resolution
is considered negligible here. Contact location effects only
the calculation of moment balance, and for grasps where the
objects are significantly larger than the receptive area of a
tactile sensor, the minuscule shift in contact location would
have negligible effect on the moment. As a result, the surface
normal direction is the main source of the stability prediction
uncertainty.

A grasp stability prediction is reliable if for a given
perceived surface normal vector, none of its corresponding
potential true normal vectors can produce a prediction that
is different from the perceived one. Hence, to check the
reliability of a prediction is to check the stability measure
calculated by all the potential true normal vectors within the
α/2 of the perceived normal.

Recall the underlying formulation of convex hull can be
thought as looking among all the combinations of force vectors
— one from each contact and inside the friction cones —
to see if there exist a combination that can achieve wrench
equilibrium. Therefore, the process of using friction cones
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Fig. 5: (A) Perceived, actual, and effective friction cones in
3D. (B) The cross-section of (A), where uncertainty in contact
normal results in a range of potential friction cones, bounded
by the green and blue cones. (C) the overlap between the green
and blue cones, shown in red, is the cone containing the force
vectors that can be reliably exerted at the given point; the angle
that spans this “effective friction cone” can be calculated by
φ = β − α/2.

to calculate ε means all the combinations of force vectors
within the friction cones are automatically tested for equi-
librium. Consequently, to ensure all possible combinations of
force vectors at each contact are tested, we simply have to
calculate the grasp stability measure using a few friction cones
that collectively span all potential force vectors at the given
contact. In most cases, the friction cones defined by a set of
extreme surface normal vectors that can approximate the full
range(Fig. 5).

Alternatively, when using a perceived surface normal that
is skewed from the actual normal, the stability calculation
may be relying on force vectors that will cause slip in reality.
Therefore, to be safe, instead of using all the force vectors
inside the friction cone defined by the perceived normal, only
the force vectors that are simultaneously inside all potential
friction cones will be used. For a contact with apex angle of
α 6 2β, all the non-slipping force vectors form a new cone
with apex angle of 2φ, where φ = β − α/2 (Fig. 5). This
is equivalent to assuming a more conservative coefficient of
friction, which inevitably produces more conservative stability
estimates and smaller stable graspable regions on objects. We
will refer to the coefficient of friction that corresponds to the
new conservative friction cone defined by φ as the effective
coefficient of friction, or µeff (Fig. 5. If α > 2β, then it would
be impossible to guarantee that only non-slip forces are used
in force equilibrium calculations using tactile sensors alone.

B. Example Objects

To demonstrate how uncertainty in spatial resolution propa-
gates into grasp stability calculations, we apply our method to
a few objects of known geometry, so that we can compare the

Fig. 6: There are two possible extreme contact normal vectors
for a single planar contact: +α/2 and −α/2 surrounding the
true contact normal. This results in four combinations of the
extreme friction cones for a 2-finger planar grasp.

stability measure calculated from the perceived normals to the
true one, and see how tactile sensor uncertainty is manifest on
actual objects.

We will also make a few simplifying assumptions for ease
of illustration, though all of the assumptions can be modified
as needed to match specific systems. The magnitude of total
force here is normalized to 1 to represent actuation limits, the
coefficient of friction is also 1 unless otherwise noted, and the
COM coincides with the geometric centroid of the object. We
also assume no external task forces, so that force equilibrium
in this case can be thought as whether the object will slide
against the fingers when squeezed. Task forces and gravity can
be added in a straightforward fashion using the original model
described by [6]. Also recall that the contact model used here
is the rigid point-with friction contact model, so that surface
normal on the finger at contact is equal and opposite to the
surface normal of the object.

Many objects have spherical or rectangular profiles, so two-
fingered planar grasps of these objects can be simplified to be
represented in 2D as grasping of a circle or a square for ease
of illustration. At each configuration, we calculate the stability
predictions using the full range of possible normals — which
can be shifted by ±α/2 from the perceived normal— and then
compare them against the true stability. The overall reliability
of grasp prediction for a given object can then be evaluated
after the reliability of prediction at each configuration has been
examined.

Two contact locations and the center of the sphere deter-
mines a great circle. To examine all possible contact configura-
tions on a circle, we fixed one finger at one point on the circle
and scanned the second finger along the perimeter (Figure
7A). The angle between the two fingers is parameterized by
θ = [0, 2π). The potential ε at each point of circle are plotted
in Figure 7B for two sensor resolutions: α = π/6(≈ 30◦) and
α = π/12(≈ 15◦). In both plots, the black lines represent
the true ε values at each point on the perimeter. In two finger
grasps where both fingers have the same sensor resolutions,
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Fig. 7: (A) The ε values for all contact locations calculated
by fixing one finger at the bottom of the circle, and scanning
the second finger along the perimeter. (B) the variability of
ε increases with lower sensor spatial resolution. The regions
of definite stable(S), definite unstable(U), and ambiguous(M)
contact locations are labeled along the bottom. Values where
ε < 0 are unstable and are plotted as ε = 0.

Fig. 8: (A) The placement of the second finger that produces
stable, unstable, and ambiguous regions on the circle, (B)
As the resolution increases, the size of regraspable region
(definitely unstable+ambiguous) decreases.

there are four combinations of the extreme friction cones (See
Figure 6), and all four should be calculated. If all the four ε
values have the same sign, then the grasp prediction at this
specific configuration is reliable. These four combinations of
extreme cones are all plotted. However, for a circle, two of the
combinations result in the same ε values as the other two, and
they are shown in the plot as blue and green lines. ε calculated
using µeff is also plotted in red.

For a given configuration where the finger 2 contact is at
θ, the corresponding ε may vary depending on the perceived
contact normal vector used for calculation. If the signs of all
the possible ε values are all positive, then the grasps corre-
sponding to these θs are definitely stable despite resolution-
induced uncertainties(S). When they are all zeros, then the
corresponding grasps are unmistakably unstable(U). But if

Fig. 9: (A) The ε values for all contact locations calculated by
fixing one finger at the bottom of the square, and scanning the
second finger along the perimeter. (B) ε calculated by using
the four combinations of extreme friction cones shown in fig.
6. The regions of definite stable(S), definite unstable(U), and
ambiguous(M) contact locations are labeled along the bottom.
Values where ε < 0 are unstable and are plotted as ε = 0.

Fig. 10: (A) The grasp is only definitely stable when the fingers
are on opposite sides of the square, (B) As the resolution
increases, the size of definite stable region remains stable, and
the size of ambiguous regions reduces.

they disagree and have different signs(M), then the predictions
corresponding to these θs can go either way, and the outcomes
is indistinguishable by tactile sensors. Grasp configurations
that land in region S are definite successes, and those that in
either region U or M require regrasping.

For objects with a circular cross-section, the plots indicate
that when the fingers are close together, the grasps will always
fail, and when the fingers are on the opposite sides of the
object, the grasps will succeed. The ambiguous regions are
sandwiched between the definitely stable and definitely unsta-
ble region, and the sizes of those areas decrease as the tactile
resolution increases (Fig. 8). Hence, higher tactile resolution
allows more area on the object to be reliably graspable.

Figure 7 also shows that using the µeff outputs the same
sign as the minimum grasp quality values throughout the
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grasping surface. While the exact values are not the same, the
limits of θ that separates the reliably stable region from the
rest is consistent. Therefore µeff can be used as a shortcut to
calculate stability, as long as the extreme friction cones have
overlapping regions.

The analysis for an object with a square cross-section is
similar, with the added complexity of corners, where there
is a range of true surface normals of 90◦, which implies the
perceived surface normal can have a range of 90◦ + α. As a
result, when calculating the grasp qualities at a corner, the two
extreme friction cones may not overlap. Therefore in order to
cover all the possible force vectors on the corner, a friction
cone in addition to the two extreme ones are used to evaluate
potential ε. The additional cone has a normal that bisects the
corner angle.

The results are plotted in Figure 9. Similar to a circle, grasps
where the fingers are on the opposite sides of the square are
always successful, and grasps with fingers on the same side
will always fail. If the friction coefficient is high enough, it is
possible to achieve success with fingers pinching the square
from two adjacent sides. The ambiguous regions are similar
to the circle, and µeff also correctly marks the θ limits. The
variation of ε is the highest at the two opposing corners,
for they could produce ε values ranging anywhere from 0 to
almost max(ε).

This analysis reveals that limitation in tactile spatial resolu-
tion can drastically change the ratio of definite-stable, definite-
unstable, and ambiguous regions. For objects with a circular
cross-section, higher resolution linearly increases the sizes of
graspable region and definite-failure region, as well as linearly
reducing the size of ambiguous region (Fig. 8). For planar
grasps on objects with square cross-sections, the guaranteed
success region remains relatively constant regardless of res-
olution, but the ambiguous region shrinks as the resolution
increases (Fig.10). The decrease in ambiguous region is mostly
the result of distinguishing when the pinch grasp is no longer
obtainable due to lack of moment balance for points closer to
the upper corners.

IV. DISCUSSION

In this paper, we determined the effect of tactile sensors
spatial resolution on grasp stability prediction accuracy. Using
classic grasp analysis, the uncertainties introduced by limited
spatial resolution on estimates of contact surface normal and
location are propagated into the grasp stability calculation, so
that the reliability of the stability prediction can be quantita-
tively correlated with tactile sensor resolution.

Historically, task performance has been difficult to relate to
sensor parameters. This is the first time to our knowledge that
task performance is directly linked to sensor quality quan-
titatively. This framework allows sensor design parameters
to be set by desired performance, as well as more accurate
task performance evaluation by including sensor quality in the
calculations. Understanding the relationship between sensor
metrics and task performance is key in optimizing the system
for expected tasks.

A. Implication for Sensor and System Design

Our approach offers quantitative solutions to sensor design
decisions for grasping tasks. For example, assuming a sensor
layout where the resolution is the same as each tactile sensor’s
coverage, then when using a moderately conservative coeffi-
cient of friction µ = 0.5, each sensor must have a coverage
angle, α, of at most 2tan−1µ, or approximately 53◦. In a
hemispherical fingertip with a diameter of 2cm, 53◦ covers
an arc of 9mm, or approximately a 9mm-diameter circular
patch in 3D. Then to cover the whole hemisphere would
require at least 10 such sensors. Figures 8 and 10 show that
a coverage of 53◦ or 0.9rad still leaves significant ambiguous
regions on an object with circular or square cross-sections. An
even more conservative estimate for coefficient of friction of
µ = 0.2 would decrease the α to 22.6◦, or the patch to 4mm in
diameter. It would increases the minimum number of sensors
needed to 50, but reduce the size of the ambiguous region by
approximately half.

Our analysis suggests that while the ability to predict grasp
stability through tactile sensors is based on local contact
surfaces and independent of global object geometry, the benefit
of using tactile sensors to ensure stability is more prominent
for some geometry than others. In rectangular objects, where
there are large parallel surfaces and discrete contact normals,
the system can achieve reliable stable grasps as long as it
guarantees the fingers are on opposite surfaces and close to
the center of mass, in which case simple vision accompanying
parallel grippers could be enough. For objects with curved sur-
faces and continuous contact normal directions, the prediction
accuracy is then directly correlated with the sensor resolution
as analyzed. Therefore, the requirement for tactile sensors may
also depend on the variety of object shapes exist in the task,
where objects with non-parallel surfaces are more likely to
benefit from tactile sensors with high resolution.

B. Beyond Ferrari and Canny and Spheres

The method proposed here is applicable to a wide range
of grasping systems because it is agnostic to the sensor and
finger mechanics and the choice of grasp theory employed.
The key concept is that physics-based grasp prediction focuses
sensor evaluation into a well-formulated physics problem,
and the parameters essential for solving the equations are
the information we need from the sensors. The range of
possible sensor values due to resolution limits are propagated
through the physical model to determine their effects on grasp
prediction.

Ferrari and Canny defined a stable grasp by two conditions:
(1) the ability to achieve force and moment balance, or force-
closure, at the given grasp configuration, and (2) all resultant
forces are inside their corresponding friction cones, so that
there is no slipping at the contacts. To establish the friction
cones at each contact, we need the coefficient of friction and
contact surface normal; to calculate force and moment balance,
we need contact locations plus the friction cones sizes and
orientations. These parameters are what one should look for
in the sensors.
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The Ferrari and Cannys stability conditions translate to a
minimal set of “essential parameters” — parameters that are
necessary to solve for the stability condition. Other grasp
stability definitions may have a different set. Some stability
definitions use the curvature of the local surface [12], in which
case the finger and object curvature becomes essential. For
models assuming soft contact, the material deformation prop-
erty is key because the area, pressure distribution, and friction
of a contact are all functions of the material properties [13].
Some of these additional essential parameters can be obtained
a priori, such as finger geometry and material properties. But
parameters such as local object curvature must be delegated
to sensors to collect in real time, and are therefore subjected
to sensor limitations.

Furthermore, information obtained by other sensor modal-
ities, such as kinematic and dynamics sensors, can also be
mapped onto the same essential parameters. For example,
joint angles are needed to calculate the fingertip position
in space, which when combined with finger geometry and
tactile sensors, can determine the surface contact normals
and locations in robot coordinates. If the encoder count is
low, then the uncertainty in fingertip position can result in
enough uncertainty in the contact normal to affect the task
performance. The bounding values of the encoder uncertainty
can be propagated through the stability calculation — as above
with the tactile sensor data — to determine the resulting
limitation on grasp stability prediction. Hence, the needed
accuracy of joint angle encoders can also be determined based
on desired performance in the same way.

The above analysis on the effect of tactile sensor spatial
resolution is decoupled from the issue of obtaining other
essential parameters such as friction, mass, and COM. In some
cases, heuristically estimating them from geometric informa-
tion and past experience has been shown to work well enough.
Nevertheless, sensors for measuring friction, mass, and COM,
as well as dynamic events such as slip will be important for
reliable task performance and real-time control in unstructured
environments. For further discussions of friction, slip, and
inertia detection, see [14], [15].

While we illustrated our concepts using 2-finger planar
grasps for the ease of explanation and visualization, the models
on which we based our analysis are already in 3D, and
applicable for multi-contact grasps. Therefore the extension to
3D is straightforward. More work may be needed to make the
algorithm more computationally tractable as more dimension
and contacts are added.

C. Implication for Machine Learning
Real world grasping has complex interaction dynamics and

significant noise and uncertainties. Recently, a number of
researchers have employed a data-driven, machine learning
approach [16], [17], [18]. However, despite experimenting
with different algorithms, machine learned results so far are
not convincingly generalizable, with most obtaining stability
prediction accuracies of approximately 80% to 90% when
tested on unknown objects [19].

The reasons behind the plateau may be twofold: 1) high
dimensionality of grasping and high cost of obtaining real data,

Fig. 11: Implication for Machine Learning. Spatial resolution
limits lead to a fraction of the training data being ambiguous,
which sets the ceiling for maximum accuracy if those signals
are used to train a grasp prediction algorithm. Example here
is for spherical objects.

leading to a training dataset that is too sparse; and 2) sensors
are not capturing enough information. Our analysis gives some
evidence for (2). More specifically, grasp configuration in the
ambiguous region may have the same sensor signal represent-
ing both failed and successful grasps. Data collected from
ambiguous grasps would have seemingly randomly labeled
data. The algorithm trained on ambiguous data will produce
the same random labels for future grasps in the same region.
Hence the best the resulting algorithm can do is predicting all
the definitely-stable and definitely-unstable regions perfectly,
and responding to grasps in the ambiguous region by chance.

For example, as roughly calculated in section IV-A, a sensor
with resolution α = 22.6◦ covers a patch of approximately
4mm on a 2cm-diameter fingertip — a resolution that is on
par with some sensorized robotic hands [5] — will produce
an algorithm that guesses the outcome of almost 20% of
grasps on spherical objects (Fig. 8), assuming that training
data spans the average of possible contact locations. Unless
more accurate surface normal and contact location information
are embedded in other sensors, the stability prediction based
on tactile sensors alone will not perform above 90% accuracy.

While better differentiation between unstable and ambigu-
ous region does not necessarily change the control strategies,
for they both require regrasping, it will affect sample labeling
in data-driven strategies. Larger ambiguous regions means
more randomly labeled samples in the dataset, which will fix
a ceiling of stability prediction accuracy that is correlated with
the size of the ambiguous regions (Fig. 11).

Our analysis suggests that tactile sensor spatial resolution
limits, and potentially other inherent sensor limitations, can
be one of the culprits in the plateauing of success reached by
data-driven stability prediction algorithms. If the needed in-
formation is embedded in the sensors but in complex patterns,
then machine learning can be potentially helpful in extract-
ing them, but even the most sophisticated algorithms cannot
compensate for gaps in relevant information signals. Therefore
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it is imperative to understand the information content of the
sensors for each setup on case-by-case basis in order to have
reasonable expectations for the respective learning algorithms.

V. CONCLUSION

Understanding the relationship between sensor quality and
task performance is essential for designing better grasping sys-
tems that achieve desired performance. This paper presented a
method to quantitatively relate the spatial resolution of tactile
sensors to the system’s ability to guarantee grasp stability. An-
chored by grasp theory, our analysis laid out how tactile sensor
spatial resolution introduces uncertainties in surface normal
and contact location, and how it ultimately influences grasp
stability calculation. The approach here can be extrapolated
to a wide range of tasks that have relatively reliable physical
models by (1) identifying the essential parameters for task
performance; (2) mapping the sensor signals onto the essential
parameters; and then (3) quantifying sensor uncertainty and
propagating errors to the task, and thereby determining the
potential performance.
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