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Abstract—One of the key design parameters in tendon-driven
continuum robots is the number of tendons and the tendon load-
ing distribution. A load model is also helpful for avoiding slack in
tendons that causes control inefficiency and inaccuracy. A quasi-
static model of n-tendon continuum robots is derived using the
Euler–Lagrange formulation. The model is employed to derive an
analytical loading model for equidistant tendon tensions for any
given beam configuration within the workspace. The model ac-
counts for the bending and axial compliance of the manipulator as
well as tendon compliance. Features of the proposed model are dis-
cussed and some of the potential applications are explained. Based
on the proposed model, a slack avoidance algorithm with analytical
formulation is developed to dynamically optimize the tendon loads
while preventing slack in tendons for a given configuration. The
proposed model is experimentally validated in a multitendon con-
tinuum robot system for four case studies of three- to six-tendon
arrangements in open-loop control architecture. A stereo vision-
based three-dimensional reconstruction system measures the beam
configuration and properties for each of the three- to six-tendon
continuum robots. The effect of number of tendons on the ten-
sion loads in n-tendon continuum robots is studied. A quantitative
dimensionless relationship between the number of tendons, the
maximum tendon loads, and the bending angles is developed that
may be used as a design tool for tradeoff among the complexity
and required force and size.

Index Terms—Analytical model, catheter, continuum robot, flex-
ible manipulator, kinematics, load distribution, robotic surgery,
slack avoidance, snake robot, statics, tendon-driven manipulator.

I. INTRODUCTION

CONTINUUM robots are found in a variety of fields, from
industrial inspection to medical procedures, where there is

a requirement for navigating through complex and constrained
environments [1]–[6]. They are inspired by natural continuum
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structures such as elephant trunks [7], octopus arms [8], squid
tentacles [9], and snakes [10], [11]. In the medical field, catheters
and catheter-like instruments are well-known examples of con-
tinuum structures that have gained attention in minimally inva-
sive treatments [12], [13]. The continuous structure and inherent
compliance of catheters enable them to exhibit elastic deforma-
tion along their entire length and navigate safely through tis-
sues [14]. Instead of being defined by a finite set of joint param-
eters, they are more accurately defined with spatial curves [15].
This introduces more complexity in shape and position control
of these systems as opposed to rigid link structures [16]–[18].

Tendon-driven mechanisms are well-known actuation sys-
tems for continuum robots and catheters [19]. Kinematics anal-
ysis is used to determine the tendon displacements for a given
configuration in the workspace [4], [5], [18], [20], [21]. How-
ever, tendons can only support tension (negative load) and in
compression they tend to buckle (go slack) because of their
low bending stiffness [20], [22]. Actuation of a slacked tendon
will first recover the slack before producing tension in the ten-
don [23]. This latency results in actuator backlash that is one of
the key causes of inefficiency and inaccuracy in the controllers
of robotic catheters [24]. Slack in redundant tendon-driven sys-
tems may or may not cause tip position inaccuracy; however,
it directly affects the stiffness of the articulating beam and also
the load distribution among tendons [13]. Approaches to prevent
slack while minimizing tendon loading were studied in redun-
dant rigid-link tendon-driven mechanisms [25]–[28]. Slack may
be removed by applying more loads in tendons. High tendon load
in continuum robots generates less compliance and more fric-
tion. Therefore, slack and excessive loads are both undesirable
characteristics especially in catheters in which tendon size and
materials are constrained by the environment [13], [29].

The tension in tendons will cause compression and bending
in the compliant manipulator and extension in the tendons. This
produces a coupled mechanical and kinematics problem that
requires a loading model to address both of these aspects. This
model has immediate applications not only in design process,
to determine the required power for the actuators based on the
mechanical properties of the continuum structure and tendons,
but also in control algorithm in order to avoid slack (positive
load) as well as excessive loading for any given configuration
in workspace. This model is also useful for determining the ten-
don extension to increase position accuracy especially in case
of open-loop control solutions. Furthermore, establishing a rela-
tionship between the displacement and tension in tendons may
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simplify the controller and improve performance and accuracy
without using force sensors.

Several studies were reported on the distribution of inter-
nal/external loadings in planar and spatial pneumatic- and cable-
driven continuum manipulators [16], [30]–[36]. Tension loads
were estimated in a single segment three-tendon continuum
robot with only two active tendons [37]. A mechanics-based
model was proposed to numerically estimate the tendon loads
in n-tendon planar continuum robots [23]. This work was later
extended for spatial multitendon continuum robots [18]. In these
studies, numerical optimization techniques were employed to
estimate tendon tensions for continuum robots with more than
three tendons. The model was experimentally validated only
for a four-tendon continuum robot. Compared to this previous
work, the model proposed here has the advantages of analyti-
cal representation, which can be directly employed to develop
features and control algorithms including closed-form Jacobian
matrix, inverse and forward kinematics, and slack avoidance
control algorithm.

Another model for the statics and dynamics of robots with
general tendon routing paths were also derived by coupling
the classical Cosserat-rod and Cosserat-string models [35]. The
main focus of this paper was on position control and accuracy
in continuum robots with general tendon routing and external
loading. However, although it is not included in this paper and
there is no experimental result provided for tendon tension,
theoretically speaking, the model may be used with numerical
solution techniques to estimate tendon tensions in multitendon
continuum robots. These studies do not promise a loading model
capable of determining the tension in n-tendon continuum robot
for a given configuration within workspace.

The main contribution of this study is the development of an
analytical loading model for continuum robots with n equidis-
tant tendons that, for a given robot configuration within the
workspace, determines the unique tendon tensions. These ten-
sions correspond to the tendon displacements obtained from
inverse kinematics solution for the given configuration. The
model accounts for bending and axial deformation of the con-
tinuum structure as well as the axial deformation of the tendons.
In addition, an algorithm is also proposed to optimize the ten-
don tensions while it guarantees no slack in tendons for a given
configuration. Experimental validations for three- to six-tendon
robot configurations are also conducted to evaluate the proposed
model. The model is further employed to study the effects of ten-
don count in n-tendon continuum robots. To the best knowledge
of the authors, the proposed loading model, slack avoidance al-
gorithm, and quantitative dimensionless effects of tendon counts
have not been studied before in the literature.

In the following section, the model parameters are described.
Based on the Lagrangian formalism, the quasi-static model of
the n-tendon continuum robots is derived in Section II. Ten-
don load distribution in cases of one- and two-tendon robots
are studied and a mechanical-based approach is proposed to
derive the loading model for continuum robots with four or
more tendons in Section III. Some potential applications of the
proposed analytical model including slack avoidance, account-
ing for tendon elasticity, and using the Jacobian are discussed

Fig. 1. Schematic description of the articulating beam of a tendon-driven
catheter with n equidistant tendons (n=6 in this description) at a beam config-
uration (θ, φ, and Lc ).

in Section IV. Section V provides details about experimen-
tal setup, procedure, and results. Effects of tendon counts are
studied in IV-D followed by discussion and concluding remarks
in Section VI.

II. QUASI-STATIC MODEL

A. Model Description

The assumptions involved in this study include the following.
1) The friction between the tendons and the tendons guides

is zero [23], [35], [38].
2) The tendons always run parallel to the centroidal axis of

the beam on a radially symmetric pattern at a fixed radius
from the center of the beam [21], [23].

3) Compared to the elastic deformation energy, gravity, and
inertial effects are negligible [18], [37].

4) The robot is under quasi-static equilibrium [39].
In the absence of external loading and disturbance, a set of

material assumptions leading to linear elastic bending, linear
axial deflections, and constant curvature are also exploited in
the model [20], [40], [41].

Fig. 1 shows the schematic description of the articulating
beam of a single segment cable-driven continuum robot with
n tendons (n = 6 in this case) in an arbitrary configuration.
Oxyz is the reference Cartesian coordinate origin positioned at
the base of the beam. Bending and bending plane angles of the
beam are denoted by θ and φ. The length of the beam along its
centerline is denoted by Lc . The length of the tendons from the
termination point at the end of the beam to the base section of
the beam is denoted by Li (i = 1, . . . , n). The bending radius
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of the centerline of the beam is Rc . The tendons are embedded
in the beam parallel to the centerline on a radially symmetric
pattern at a radius of Ra from the center of the beam and evenly
separated by angles of 2π

n . Therefore, the tendons are equidis-
tant from the beam centerline and from each other. For ease of
illustration, the tendons are presented as infinitesimally thin ten-
sion elements. Considering the constant curvature assumption,
the configuration states of the continuum structure are defined
as θ, φ, and Lc . The actuator and task spaces of the continuum
robots contain the tendon lengths and the pose information of
the tip in the reference coordinate frame, respectively.

B. Model Derivation

In this section, a quasi-static load model for n-tendon contin-
uum robots is derived. Based on the Euler–Lagrange equations
for the general coordinates q, the quasi-static model of a con-
tinuum robot can be derived as

∂V

∂qi
= Qi i = 1, 2, 3 (1)

where V is the potential energy and Qi is generalized force for
the coordinates q = [θ φ Lc ]T .

1) Potential Energy: Neglecting the gravity, the potential
energy of the cable-driven continuum robots consists of the
bending energy (Vb ) and axial compression energy (Va ) in the
beam as well as the extension potential energy in tendons (Vt).
The potential energy of the articulating beam due to bending
can be defined using Euler–Bernoulli beam element analysis
as [42]

Vb =
1
2
EI

∫ L0

0

(
dθp

ds

)2

ds =
1
2

EI

L0
θ2 (2)

where E, I , and θp are the Young’s modulus, area moment of
inertia of the beam and bending angle of any point p along the
length of the beam, respectively. Based on the constant curvature
assumption, θp is equal to s( θ

L0
) where s is the distance of the

point p to the base along the centerline of the beam (arc length).
The potential energy due to the axial compression of the beam
[42] can be derived by

Va =
1
2
EA

∫ L0

0

(
dup

ds

)2

ds =
1
2

EA

L0
(Lc − L0)2 (3)

where A and up are the cross section area of the beam and the
axial compression of any point p along the length of the beam,
respectively. Assuming the linear elastic beam, up is derived
as s(Lc −L0

L0
). Based on the same theory, the extension potential

energies of the n tendons are

Vt =
1
2
EtAt

n∑
i=0

∫ Lt 0

0

(
dutp

dst

)2

dst

=
1
2

EtAt

Lt0

n∑
i=0

(Lti
− Lt0 )

2 (4)

where At , Et , and utp
are the cross section area, the Young’s

modulus of the tendons and the axial compression of any point
pt along the length of the tendon from the actuation to the

terminations points, respectively. Assuming the linear elastic

tendon, utp
= st

(
Lt i

−Lt 0
Lt 0

)
where Lt0 is the initial length of

the tendons and st is the distance of the point pt on tendon to
the base along the centerline of the tendon (arc length).

2) Generalized Force: Generalized forces are the forces or
torques acting on the generalized coordinates [

(
θ φ Lc ]T

)
[43]. The three generalized forces in n-tendon continuum robots
can be expressed as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Qθ =
∑n

i=1

(
Fi

∂La i

∂ θ

)

Qφ =
∑n

i=1

(
Fi

∂La i

∂φ

)

QLc
=

∑n
i=1

(
Fi

∂La i

∂Lc

) (5)

where Lai
is the actuator displacements and can be derived as

Lai
= L0 − Lc + Raθ cos (αi) + δi i = 1, . . . , n (6)

where L0 is the initial length of the beam at rest, δi is the tendon
extension due to the axial loading from the actuation to the
termination points, and αi is defined as

αi = φ − 2π
i − 1

n
i = 1, . . . , n (7)

Using (5) and (6), the generalized forces can be represented
as ⎧⎪⎪⎨

⎪⎪⎩

Qθ = Ra

∑n
i=1 (Fi cos(αi))

Qφ = Raθ
∑n

i=1 (−Fi sin(αi))

QLc
=

∑n
i=1 (Fi) .

(8)

Substituting (2)–(4) and (8) into the (1), the quasi-static model
of an n-tendon continuum robot may be represented as

EI

L0
θ = Qθ (9a)

0 = Qφ (9b)

EA

L0
(Lc − L0) = QLc

(9c)

for the three DOFs of θ, φ, and Lc , respectively. This constitu-
tive equation captures the relationship between the mechanical
response of beam strain (or configuration) and the tension load
in tendons under quasi-static equilibrium condition. It should
be noted that this equation is independent of the actuator dis-
placements and tendon extension. This static model matches the
constitutive equation derived based on the beam mechanics in
matrix form [18], [23]. Although there is no necessity in us-
ing the Euler–Lagrange formalism for development of the static
model, it is more expandable and can be used to also develop
the dynamic model of the continuum robots in future works.

III. LOAD ANALYSIS

To facilitate the development of the load model for general
n-tendon robot, the proposed quasi-static model is employed
to study the tendon load distribution for the general case of
three or more tendon robots as well as special cases of one- or
two-tendon robots in this section.
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A. General Case—Three or More Tendons (n ≥ 3)

If there are three actuated tendons (n = 3) in a continuum
robot, it has three DOFs of θ, φ, and Lc that can be independently
controlled, which results in a fully determined system. In this
case, the tendon tension loads can be directly derived using (9)
as functions of beam configuration parameters as

Fi =
EA

3L0
(Lc − L0) − 2EI

3L0Ra
θ cos(αi)

i = 1, . . . , 3.

(10)

Having four or more tendons in a continuum robot makes
the system overactuated and mathematically underdetermined
(three equations and four or more variables). Optimization tech-
niques have been employed to numerically estimate the tendon
tensions based on a weight function to satisfy optimization cri-
teria, which may result in slack tendons and nonoptimal load
distribution [18], [23]. Here, a mechanics-based approach is pro-
posed to derive a tension loading model for n-tendon continuum
robots for any possible beam configuration.

In a tendon driven continuum robot at the given beam con-
figuration, the tension loads in the tendons correspond to both
bending and axial compression of the articulating beam. The
portion of the tension load in the ith tendon corresponding to
the beam bending has direct linear relation to both the bending
angle θ and the moment arm Ra cos(αi). Therefore, it may be
expressed as KbRaθ cos(αi), where Kb is a variable. The other
portion of tension load in ith tendon that corresponds to the
axial compression of the beam is directly related to the changes
in the length of the beam (Lc − L0). Thus, it can be represented
by Ka(Lc − L0) with Ka being a variable. So the tension load
applied to the ith tendon can be subsequently expressed as

Fi = Ka(Lc − L0) + KbRaθ cos(αi){
i = 1, . . . , n
n ≥ 4.

(11)

By this definition, the resulting tensions will be proportional
to the displacements in the corresponding tendons that makes
the tendons carry the local loads. This loading distribution is
similar to the distribution that exists in one-, two-, and three-
tendon cases as described in (15), (17), and (10). In other words,
this definition will extend the loading distribution of one-, two-,
and three-tendon cases to four and more tendons cases. By
substituting (11) into (9a) and (9c), parameters Ka and Kb can
be determined as

Ka =
AE

nL0

Kb = − 2E I

nL0 Ra
2 .

(12)

As implied by (12), parameters Ka and Kb are functions of the
geometry and mechanical property of the articulating beam and
the fixed locations of the tendons. The tension load applied to the
ith tendon (Fi) in a continuum robot with four or more tendons
can be derived by substituting Ka and Kb back into the (11).
The loading model derived in (11) also works for three-tendon

robots and, for n = 3, it results in (10). Equations (15), (17), and
(11) can be used to determine the tendon tension loads in robots
with one, two, and three or more tendons, respectively. In order
to provide a single formula for n tendons (n ≥ 1), a parameter
k is introduced that represents the number of controllable DOFs
of the robot. With this introduction, these equations may be
combined into a single equation

Fi =
E

L0Ran
(ARa(Lc − L0) − (k − 1)Iθ cos(αi))

i = 1, . . . , n (13)

where k is defined as

k =

{
n if n = 1, 2

3 if n ≥ 3.
(14)

This load distribution formulation determines the tendon ten-
sions in a robot with any number of tendons (n ≥ 1) for any
given configuration within the workspace. It should be noted
that this proposed load distribution makes each tendon tension
proportional to the tension displacement obtained from the in-
verse kinematics solution (6) for the given configuration.

B. Special Cases—One- or Two-Tendon (n < 3)

If there is only single actuated tendon in a robot, it has only
one DOF; either θ or Lc , and φ is zero. In this case, either of
(9a) or (9c) can be utilized to derive the tendon tension load as
a function of the beam configuration as

F1 = − EIθ

L0Ra
=

AE (Lc − L0)
L0

. (15)

Alternatively, (13) may be used with n = 1 and k = 1 to
obtain similar representation of the tension load in single-tendon
robot as presented in (15). In case of a single-tendon catheter,
the variables θ and Lc are dependent and their relationship may
be presented as

Lc = L0 − I

ARa
θ. (16)

If there are two actuated tendons in a robot separated by 180◦

angle, the mechanical system becomes a system with two DOFs
of θ and Lc . φ is still not controllable and is either zero or 180◦.
Entering n = 2 and k = 2 in (13) results in the tendon tension
load in ith tendon in two-tendon robot configuration as

Fi =
1
2

EA

L0
(Lc − L0) − 1

2
j

EI

L0Ra
θ

j =
{

1 if i = 1
−1 if i = 2.

(17)

Alternatively, both (9a) and (9c) may be utilized to derive
the tension loads in two-tendon robot as a function of beam
configuration as presented in (17).

C. Load Distribution

The constitutive equation (9) for continuum robots with four
or more tendons is underdetermined. It includes (n − 3) free
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variables that may be chosen based on the desired behavior of
the system and the three remaining variables need to be de-
termined using the constitutive equation to satisfy equilibrium.
This arbitrary selection of tensions for some of the tendons is
mathematically meaningful; however, it is not physically rele-
vant. This is because for a given beam configuration, there is a
unique set of tendon tensions corresponding to the tendon dis-
placements determined by the inverse kinematics solution for
the given configuration. This means that if, based on the inverse
kinematics solution for a given configuration, a set of tendon dis-
placements is commanded to the continuum robot, the resulting
tendon tensions are unique. The beam structure distributes the
loads among all the tendons based on their locations if the ten-
don displacements correspond to the given configuration. This
is reflected in the proposed model as it produces a unique set
of tensions for any given configuration within the workspace.
Therefore, one advantage of the proposed model is to provide a
simple closed-form expression for tendon tensions that can be
used to, for example, avoid slack, which makes the control easy
to perform in position space.

On the other hand, in a force control scenario, a set of ten-
don tensions may be chosen, i.e., the tendon tension(s) as free
variable(s) can be chosen arbitrarily based on the desired per-
formance and the three remaining tension variables need to be
obtained using the constitutive equation, to serve as input com-
mands that moves the robot to the same beam configuration.
However, it does not result in same tendon displacements and
stretches as those determined by the inverse kinematics solution
for similar configuration. In this case, the arbitrary selection of
tendon tensions is both mathematically meaningful and phys-
ically relevant. It may be possible to adjust the tension loads
based on the desired behavior, for example, to lower the peak
tensions; however, this would requires continuous supervision
and numerical optimization algorithms for control and slack
avoidance in the system.

To further study the load model proposed in (13), two tendons
are randomly chosen and the relationship between their tensions
for a given configuration is investigated. Load distribution in
n-tendon continuum robots (n = 6 in this example) for a given
configuration (θ, φ, and Lc ) is schematically described in Fig. 2.
Two arbitrary tendons i and j are selected and their tension
vectors are illustrated in this figure by Fi and Fj that represent
the magnitude and direction of these tension loads. End points
of these tension vectors belong to the line pxpy . The slope of
this line in Otx y

coordinates lying on the bending plane with its
origin located at the tip of the robot (see Fig. 2) is

m =
Fi − Fj

Rij
(18)

where Rij is defined as

Rij = Ra cos(αi − φ) − Ra cos(αj − φ){
i, j = 1, . . . , n
i �= j.

(19)

Fig. 2. Schematic description of load distribution in n-tendon continuum
robots (n = 6 in this example) at a given configuration (θ, φ, and Lc ). (a) 3-D
isometric view. (b) Projected view on the bending plane.

Substituting (13) and (19) into (18) yields the slope of the
line pxpy as

m =
2EIθ

nLoR2
a

. (20)

The x- and y-intercepts of this line are

bx =
AR2

a(L0 − Lc)
2Iθ

(21)

by =
AE(L0 − Lc)

nL0
. (22)

From (20) and (22), the slope and y-intercept of the line
pxpy are not dependent on the location of the ith or jth tendons
and are functions of beam properties, tendon count, and beam
configuration. This reveals the linearity feature of the loading
distribution among tendons for n-tendon continuum robots for
any given beam configuration within workspace, as illustrated in
Fig. 2. It should be noted that linear loading distribution is only
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valid if tendons are equidistant from each others and centerline
of the beam. The linearity property of the loading distribution
in n-tendon continuum robots may be directly utilized, as an
alternative method to the proposed mechanics-based solution
described in Section III-A, to solve the underdetermined con-
stitutive equation that results in a similar analytical formulation
as presented in (13).

IV. MODEL APPLICATIONS

The analytical load model proposed in (13) may be used
in control algorithms to increase efficiency and accuracy by,
for example, avoiding slack in tendons, accounting for tendon
elasticity, and providing a Jacobian matrix, as described in the
following sections.

A. Slack Avoidance

The tendon tensions obtained from the load model presented
in (13) correspond to the actuator displacements of (6), which
may result in positive tensions or slack in tendons. This means
that to reach a given beam configuration, the tendons would
have to act like solid rods capable of pushing and pulling along
their axis. A key benefit of the proposed tendon tension model
is that it can facilitate development of analytical algorithm for
avoiding slack in n-tendon continuum robots without need of
any optimization or numerical methods [23]. The value of φ at
which the maximum tension load in the ith tendon happens may
be determined using (13) as

φFmax = 2π
i − 1

n
+ qπ

{
i = 1, . . . , n

q ∈ 2N + 1.
(23)

In order to avoid slack in tendons, the maximum tension load
in any of the tendons in any bending plane angle φ should not be
more than zero. This means that, to reach a desired θ and φ with
no slack in the tendon with lowest tension and also with linear
tendon loading distribution, the maximum beam length (Lcmax )
needs to be determined in a way that the beam configuration (θ,
φ, and Lcmax ) results in no slack and zero tension in the tendon
with lowest tension. Substituting (23) into (13), the required
length of the articulating beam to prevent slack in the worst case
of zero tension load in the tendon may be obtained as

Lcmax = L0 + (k − 1)
I θ

ARa
k ≥ 2. (24)

The constraint k ≥ 2 in this equation is because slack is mean-
ingless in case of single-tendon robot. With this equation, for
any desired bending angle, the length of the beam is determined
independently from the bending plane angle in order to satisfy
the peak condition of zero tension in tendons obtained from
(23). In other words, it determines the biggest possible length of
the beam that produces no slack in tendons for any given beam
configuration. This guarantees that the tendon tensions are never
positive while it further avoids excessive loads in the tendons by
zeroing the load in the tendon located at the back of the beam
on the bending plane at which the peak force is occurring. It is
worth noting that depending on the desired beam configuration,
Lc may be further extended to decrease the loading distribution

in tendons while it still satisfies the no slack requirement. This
is possible by manipulating the tension load at the location of
the farthest tendon at the back rather than the tendon located at
φFmax . This, however, produces a different loading distribution
that is beyond the scope of this paper and will be presented
and discussed in future work. Substituting (24) into the (13),
the new tendon loading distribution model in an n-tendon robot
guaranteeing no slack and optimizing tension loads is

FiNoSlack =
EIθ

L0Ran
(k − 1)

× (1 − cos(αi)) k ≥ 2

i = 1, . . . , n. (25)

It should be noted that this load model is not dependent on
Lc . The reason is that for a given beam configuration (θ, φ,
and Lc ), the updated beam configuration (θ, φ, and Lcmax ) is
used to develop this model where Lcmax is obtained from (24).
In other words, the slack avoidance algorithm requires only the
target bending angle θ to determine the longest length of the
continuum structure guaranteeing both no slack and optimized
loading in tendons.

B. Tendon Elasticity

The proposed analytical loading model may also be useful in
increasing accuracy and performance of control algorithms by
accounting for tendon elasticity. Based on Hook’s law and the
tension loads in tendons, the axial extension in tendons is

δi =
FiL0t

EtAt
i = 1, . . . , n (26)

where Et , At , and L0t
are the Young’s modulus, cross section

area, and initial length of the tendon at rest, respectively. This
equation can be used in (6) to determine the actuator displace-
ments.

C. Jacobian Matrix

One advantage of the proposed analytical approach is that
it facilitates derivation of closed-form Jacobian, which may be
useful in position control of a continuum robot based on the
tendon tensions. This may be problematic for numerical opti-
mization based approaches [23]. Based on the proposed loading
model, the Jacobian matrix of the tendon tensions may be de-
rived as function of beam configuration as

JFi
(θ, φ, Lc) =

[
∂Fi

∂(θ, φ, Lc)

]
n×3

=
E

nL0

[−2I

Ra
cos(αi)

−2I

Ra
θ sin(αi)A

]
n×3

i = 1, . . . , n. (27)

D. Effects of Tendon Count

In this section, the proposed model is used to study the effects
of the number of tendons in continuum robots. The maximum
tension load of the ith tendon in an n-tendon robot (n ≥ 2) at the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DALVAND et al.: ANALYTICAL LOADING MODEL FOR n -TENDON CONTINUUM ROBOTS 7

Fig. 3. Modular continuum robotic system capable of manipulating catheters with up to six tendons integrated with a real-time vision-based 3-D reconstruction
system.

bending plane angle φFmax (23) for any bending angle θ within
the workspace of the robot can be derived using (13) as

Fimax = − 2EI

L0Ra

(
k − 1

n

)
θ = CF γ. (28)

In this equation, the parameter CF = − 2EI
L0 Ra

is a constant of
geometry and mechanical properties of the articulating beam,
and the variable γ = ( k−1

n )θ is a dimensionless parameter. The
parameter γ relates the bending angle and tendon count to the
maximum tendon tension for the case of no slack in any of the
tendons. Therefore, γ may be used to represent the effects of
the tendon count on the tension loads in tendons. A contour plot
illustrating of the variable γ is shown in Fig. 4 for the bending
angles of 0◦ to 90◦ for robots with three and more tendons. γ
is identical for the robots with two- and four-tendon. Therefore,
to produce a continuous trend in the plot, the two-tendon case
is not included in this plot. Based on the design parameters of
tendon count and the maximum required bending angle for a
specific application, the variable γ can be obtained using this
plot. The maximum required tension loads in tendons can then
be determined by multiplying the obtained γ by the constant
CF , which can be adjusted for the designated application.

Equation (28) represents a linear relationship between the
maximum tendon loads and bending angle for any number of
tendons. Therefore, as implied from the plot, the lower number
of tendons causes more increase in maximum tendon loads as the
bending angle increases. In other words, the more tendons, the
lower the tension loads. Furthermore, as the number of tendons
increases, the magnitude of the maximum tendon load decreases
for the same amount of curvature (bending angle). On the other
hand, there is a hyperbolic relationship between the tendon loads
and number of tendons (proportional to 1/n) at any bending
angle. This plot can be utilized as a design tool representing
the tradeoff between the number of tendons and the maximum

force of the actuators in an n-tendon continuum robot. This plot
is applicable for any multitendon continuum robot independent
of the size and material property of the continuum structure and
tendons.

V. EXPERIMENTS

A. Experimental Setup

In order to evaluate the proposed model for tendon tension
in n-tendon continuum robots (13), a catheter is commanded
to a series of beam configurations in a multitendon catheter
robot system in an open-loop control architecture. This system
described in Fig. 3 is integrated with a real-time vision-based
shape sensing system that enables the three-dimensional (3-D)
reconstruction of the catheters at the rate of 200 Hz with the
accuracy of ±0.6 mm and ±0.5◦ for the linear and angular
parameters, respectively, [15], [44]. This modular system is de-
signed so that it can actuate catheters with up to six tendons.
DC geared motors (Maxon Motors Inc. Model EC-max 22, Fall
River, MA, United States) are utilized for the actuation of the
tendons (see Fig. 3). Load-cells (Model FC22, Phidgets Inc.,
Calgary, AB, Canada) are incorporated into the actuation mod-
ules using a flexure mechanism enabling measurement of the
tension loads in tendons. Load-cells are calibrated using known
weights. To decrease the friction between the tendon and pul-
leys, low-friction pulleys with ball bearing are employed in the
system.

Tendons used in this setup are Spectra microfilament braided
lines (Spectra, PowerPro Inc., Irvine, CA, United States). The
multilumen catheters were molded out of urethane rubber com-
pounds (PMC 780, Smooth-On Inc., Macungie, PA, United
States). The catheter bodies are 160 mm in length and 6 mm in
radius with three- to six-lumen located at the radius of 3.5 mm
from the centroid axis. The Young’s modulus of the catheters
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Fig. 4. Contour plot illustrating the quantitative relationship between the num-
ber of tendons (n) and the tendon tension loads with no slack in multitendon
continuum robots as a function of bending angle, independent of the geometry
and material property of the robot.

and tendons are measured using an Instron 5566 universal test-
ing machine to be 5.9 MPa and 48.9 GPa, respectively. As shown
in Fig. 3, tendons are passed through the lumens and knotted to
the actuator spools from one end and to a 3-D printed part from
the other end at termination point at distal end of the catheter.
The system was operated by a PC with Intel Core i7 processors
running at 3.00 GHz with 16 GB of memory.

B. Experiment Procedure and Results

For each of the three- to six-tendon catheters, the robot was
commanded from its home configuration (at rest in vertical posi-
tion with zero tension in tendons) as shown in Fig. 3 to bending
angles of 10◦, 30◦, and 50◦ and bending plane angles of 0◦,
45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. The length of the
catheter for each of the bending and bending plane angles was
calculated from (24) to avoid slack and excessive loading in the
tendons at target configuration. For each of the three- to six-
tendon catheters, the calculated length of the catheter and the
desired bending and bending plane angle were commanded to
the robot and the trial was repeated three times; resulting in 288
trials in total. In the experiments, the measured tendon tension
loads, bending and bending plane angle, and the length of the
catheter obtained from the 3-D reconstruction algorithm [15]
were recorded. The obtained beam configuration parameters
served as input for (13) to estimate the tension loads in tendons.
The results for the three repetitive trials were analyzed to eval-
uate the repeatability. An average 3% difference between the
trials was measured, which shows high repeatability between
the trials. Maximum 0.7 and 0.3 mm compression and exten-
sion were measured for the catheters and tendons, respectively,

Fig. 5. Percentage (left column) and absolute values (right column) of the
mean errors between the estimated and measured tension loads in the tendons
of three- to six-tendon continuum robots for the bending angles of 10◦, 30◦, and
50◦, respectively, from top to bottom (mean value of the three repetitive trials).

across all experiments. The percentage and the absolute values
of the errors in the estimated tendon tension loads for all of
experiments for each of the three- to six-tendon catheters are
compiled in Fig. 5. The results are the mean values for the three
repetitive trials for each of the three- to six-tendon catheters.

There is no significant difference between the percentage
mean errors for the three bending angles. This is basically due
to the fact that the magnitude of the loads increases as the
bending angle increases causing similar percentage errors for
different curvatures. On the other hand, as the bending angle
increases, the average absolute error value increases in individ-
ual three- to six-tendon catheters. The average absolute error
was increased by around 0.7 N at the highest bending angle
compared to the lowest angle. This is also independent of the
number of tendons (see Fig. 5). The error percentages of the
estimated tendon loads increases as the number of tendon in-
creases. This is opposed to the average absolute values of the
errors, which is less in catheters with more tendons. This trend
is independent of the bending angle of the configuration. The
mean value and percentage error of all of the experiments for
the three repetitive trials for the three bending angles and eight
bending plane angles for all of the three- to six-tendon catheters
are calculated to be 0.74 N and 8.61% of the maximum loads of
each experiment.
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Fig. 6. Mean absolute errors between the estimated and measured tension
loads in the tendons of three- to six-tendon continuum robots for different bend-
ing plane angles of 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦, respectively
(mean value of the three repetitive trials).

Fig. 6 presents the mean absolute errors in the estimated ten-
don tension loads for all of experiments for each of the three- to
six-tendon catheters in different bending plane angles. There is
no significant difference between the loads in different bending
plane angles. However, similar to the loads compared based on
the bending angle (see Fig. 5), the error decreases as the number
of tendons decreases. This may be simply because having more
tendons decreases the overall magnitude of the tension loads in
tendons. Maximum and standard deviation errors between esti-
mated and measured tendon tension loadings are 1.52 and 0.6 N
across all experiments.

The absolute mean and maximum errors of 1.04◦ and 3.05◦

for the bending angle, 1.23◦ and 3.24◦ for the bending plane
angle, and 0.67 and 1.21 mm for the length of the beam struc-
ture are measured between the commanded and measured beam
configurations throughout the experiments. This demonstrates
good position accuracy of the open-loop control of continuum
robot based on the developed tension model. The mean percent-
ages of the goodness of fit for the circles and ellipsis fitted to the
continuum structure throughout the experiments are measured
99.61 and 99.86, respectively. This proves the validity of the
constant curvature assumption exploited in the proposed model.
The absolute maximum tension loads of the tendons located at
the back of the continuum structure throughout the experiments
are measured to be less than 0.1 N, which validates the accuracy
and effectiveness of the proposed slack avoidance algorithm.

Given the fact that effects of gravity, friction, viscoelastic-
ity, and nonlinearity in materials and mechanical system are
neglected in the proposed model, the experimental results pre-
sented reasonable accuracy (91.3%) for the tension load model
of the three- to six-tendon continuum robots. The errors are low
for the small bending angles and increase for the larger bending
angles, probably due to the friction between tendons and lu-
mens [45]. Other causes include uncertainties in the properties
of the beam and tendon material and measurement errors in the
vision-based 3-D reconstruction system (±0.6 mm and ±0.5◦).
The locations of the tendons within the cross section of the artic-
ulating beam were assumed to be fixed during the deformation.
However, for ease of fabrication, the lumens were manufactured
with the diameter twice as big as the tendons. This leads to the
tendons running not exactly parallel to the beam centerline and
may cause some minor errors as well.

VI. CONCLUSION

In this paper, a quasi-static model for equidistant tendon
tensions based on a linear distribution of tendon tensions in
n-tendon continuum robots was developed that accounts for the
bending and axial compliance of the manipulator as well as the
tendon compliance. The analytical loading model takes a given
beam configuration within the workspace and determines the
unique tendon tensions with linear distribution. These tensions
are proportional to the tendon displacements obtained from in-
verse kinematics solution for the given configuration. A slack
avoidance algorithm was proposed to analytically determine the
optimized beam configuration that not only decreases the tendon
tensions but also guarantees no slack in tendons. The model was
experimentally verified for three- to six-tendon robots for dif-
ferent configurations in an open-loop control architecture. The
experimental results demonstrated that the proposed model can
accurately predict the tendon tension loading of a multitendon
continuum robot with axial stretch in its tendons. The results of
the experiments showed mean error of 0.74 N or 8.61% of the
maximum loads of each experiments for the proposed model
compared to the actual measurements.

Features of the loading distribution resulted from the pro-
posed model including uniqueness and linearity were discussed
and some of the potential applications of the proposed model
including avoiding slack in tendons, accounting for tendon elas-
ticity, and using Jacobian matrix were derived. A quantitative
relationship between the number of tendons, the maximum ten-
don loads and the bending angles was established. Based on
this dimensionless model, lower loads are expected in contin-
uum robots with more tendons for a given beam configuration.
This quantitative model may be used as a design tool for the
tradeoff among the complexity (number of actuators, sensors,
and complicated controller), force (required actuator force), and
size (actuator size and tendon diameter). The proposed loading
model may be helpful for real-time control and estimation of
shape, position, and external load direction and magnitude in
continuum robots and catheters that may result in safer opera-
tion. Future work may exploit the advantages of the proposed
closed-form Jacobian in position control of continuum robots
based on the tendon tensions. External load estimation and error
analysis of the n-tendon continuum robots considering friction,
external loading, and general tendon positioning may also be
addressed in future work.
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