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Abstract— Robotic cardiac catheterization using ultrasound
(US) imaging catheters provides real time imaging from within
the heart while reducing the difficulty in manually steering
a four degree-of-freedom (4-DOF) catheter. Accurate robotic
catheter navigation in the heart is challenging due to a variety
of disturbances including cyclical physiological motions, such
as respiration. In this work we compensate for respiratory
motion by using an Extended Kalman Filter (EKF) to predict
target motion and by applying the predictions to steer the US
imaging catheter. The system performance was measured in
bench top experiments with phantom vasculature. The robotic
system with predictive filtering tracked cyclically moving tar-
gets with 1.59 mm and 0.72° mean error. Accurately tracking
moving structures can improve intra-procedural treatments and
visualization.

I. INTRODUCTION

A number of cardiac interventional and diagnostic tasks
can be performed minimally invasively using cardiac
catheters [1]. Automated steering of cardiac ultrasound (US)
imaging catheters, which feature an US transducer in the
distal catheter tip, can potentially enhance imaging of car-
diac structures and working instruments. Accurate automated
catheter steering in the heart is difficult due to many distur-
bances, including those from cyclical physiological motions
such as heart beat and respiration. Predictive filtering and
motion compensation applied to catheter steering can enable
continuous US imaging of or interaction with targets (Fig. 1).
Automated techniques may improve clinical outcomes, save
time, and ease mental and physical burdens on clinicians.

Commercially available robotic catheter systems offer
solutions for teleoperation, enabling clinicians to manipulate
a catheter at a safe distance from X-ray fluoroscopy radia-
tion exposure during intra-procedural visualization [2]–[6].
Research prototypes have demonstrated automated steering
with cardiac catheters [7]–[12] and endoscope-size manipu-
lators [13] in constrained bench top environments. Motion
tracking work on frequency-based models has not yet been
applied to motion compensation [14], [15], or has focused
on rigid robotic tools only [16], [17]. A limited number of
flexible manipulator research prototypes have demonstrated
motion compensation through in vivo animal testing: 1D
cardiac motion compensation with a non-steerable cardiac
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Fig. 1. Predictive filtering is applied towards the measured target position,
TargetMeas, in two types of instrument tracking. (A) In position-based instru-
ment tracking the tip of the ultrasound (US) catheter is navigated towards the
predicted target position, TargetEKF. (B) In imager-based instrument tracking
the tip of the US catheter is fixed in place while the US imager is rotated
to point towards the predicted target position, TargetEKF.

guidewire [18] and 3D respiratory motion compensation with
a steerable endoscope [19].

Automated cardiac catheter steering prototypes have not
yet been shown to navigate accurately in vivo or with motion
compensation. We have begun to address the difficulties of
steering cardiac catheters in vivo in our development of a
system for automatically pointing cardiac imaging catheters
in constrained bench top settings [20] and by rejecting
disturbances to the catheter body during in vivo animal
experiments [21]. In this work we focus on a predictive
filter for steering cardiac catheters to perform cyclical target
tracking at respiratory speeds in bench top experiments.
The following sections describe the motivation for cyclical
target tracking, methods for predictive filtering, bench top
experiments, and results. This paper presents the first work
known to the authors on steering cardiac catheters using
predictive filtering.

II. BACKGROUND

A. Ultrasound Catheters

While the motion compensation methods presented in this
work are generally applicable to flexible manipulators, this
investigation focuses on US catheters for cardiac procedures.
Catheters are long, thin, flexible composite plastic tubes
controlled from outside the patient at the proximal end. US
catheters feature a transducer in the distal tip to acquire
US images of instruments and tissue structures inside the
patient. The distal tip, typically inserted into the vasculature
via the groin, can be guided to the internal chambers of
the heart or into other organ systems. US catheters are
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Fig. 2. AcuNav US imaging catheter handle showing control DOFs.
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Fig. 3. Joint inputs and corresponding tip motions adjust the US imaging
plane.

useful because they can provide high resolution views during
cardiac procedures, but manually pointing the imager at a
target requires extensive training and skill.

The US catheter is manually manipulated by grasping the
catheter handle and actuating each of the four degrees of
freedom (4-DOF), as in Fig. 2, to create the tip adjustments
shown in Fig. 3. The catheter handle can be rotated or
translated (inserted/retracted). Four pull wires spaced apart
90° along the cross-section of the catheter shaft connect
the distal end of the catheter to two handle knobs. The
two bending knobs connect to pairs of opposing pull wires.
The distal end bending section is constructed from softer
materials compared to the rest of the catheter shaft. As a
result, pull wire actuation causes significant bending at the
5 cm distal bending section and moderate bending through
the rest of shaft. The most distal 2 cm section of the tip
contains the US transducer (64-element 2D US). AcuNav
is currently the most widely used intracardiac US catheter
(AcuNav, Biosense Webster, Diamond Bar, CA, USA). The
8 Fr size catheter (diameter 2.67 mm) with length 90 cm
was used to validate the system in our studies.

B. Unconstrained Catheter Motion

Our initial work on 4-DOF catheter steering relied on a
set of physical constraints which isolated bending to only
the distal 5 cm bending section of the tip [20]. The bending
section base was fixed with respect to the rest of the catheter
and robot. These constraints were relaxed in later work
towards in vivo experiments, and a new control strategy was
developed to be robust against disturbances to the catheter
body [21].

C. Respiratory Motion

We now combine robust control for unconstrained catheter
motion with predictive filtering for catheter-based target
tracking. During cardiac procedures the US catheter expe-
riences cyclical physiological disturbances from respiration
and heartbeat. Cyclical disturbances affect each region of the
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Fig. 4. Pre-recorded in vivo catheter tip displacement data used for
developing the predictive filter.

heart differently, and the US imager can become misaligned
with the target it is imaging. A method for tracking and
compensating for cyclical motions is therefore needed.

The AcuNav catheter materials were designed for dozens
of manual bending cycles, thereby making heartbeat motion
compensation impractical beyond short periods of time with
the currently used off-the-shelf US catheters. Fast catheter
motions are also difficult to achieve when manipulating the
catheter handle, as opposed to manipulating the pull wires
directly (as in some commercial prototypes [6]). We can,
however, demonstrate lower-frequency respiratory motion
compensation with existing off-the-shelf AcuNav catheters.
We do this while building a framework which can compen-
sate for cyclical motions at cardiac frequencies (assuming
the robot hardware and communications are sufficiently high
bandwidth as well).

Pre-recorded catheter tip displacement data from in vivo
porcine tests were used to analyze respiratory motions and
develop the predictive filter. An US catheter was outfitted
with electromagnetic (EM) trackers (6-DOF trakSTAR, As-
cension Technology/NDI, Ontario, Canada) and introduced
to the right heart. The system measured catheter pose distur-
bance from breathing and heartbeat motion. The US catheter
handle was not actuated during measurements.

The raw data demonstrated pose changes resulting from
both cardiac (2 Hz) and respiratory (0.2 Hz) motions. The
data were zero-phase low pass filtered to eliminate cardiac
motion (low pass filter order 50, Hamming window, cut off
frequency 2 Hz). An example is shown in Fig. 4, where the
blue line represents measured data (heartbeat and respiration)
and the red line represents low pass filtered (respiration only).
The low pass filtered data were truncated on either side due
to the edge effects. The pre-recorded respiratory data were
then used to develop the tracking algorithm.

III. METHODS

Fig. 1 demonstrates two types of tracking. Fig. 1(A) shows
position-based target tracking: the tip of the catheter is
navigated to meet the position of the target. This will be
demonstrated at respiratory speeds due to current off-the-
shelf catheter limitations. This method will be applicable
to cardiac motion compensation in later studies. Fig. 1(B)
shows imager-based target tracking: the US catheter tip is
steered to maintain the same position while rotating the
US imager to synchronize with the target. This is directly



applicable to automatically steering US catheters for con-
tinuous target visualization. We develop this framework for
motion compensation with cardiac catheters by examining
physiological motions, representing respiratory motion with a
frequency-based model, and developing a predictive filtering
method.

A. Modeling Respiratory Disturbance

We zero-phase low pass filter the raw cyclical disturbances
(Fig. 4) and then define periodic models for the isolated
respiratory motion. Each coordinate of the tip position
(x, y, z) is modeled separately. The in-depth calculations
are available in [17], which was an expansion of [22].
Abbreviated calculations are given here for completeness.

We approximate the 1D signal, y(t), with a limited number
of harmonics, m. This is represented as an m-order time-
varying Fourier series with a constant offset,

y (t) = c (t) +

m∑
i=1

ri (t) sin θi (t) , (1)

where θi (t) = i
t∫
0

ω (τ) dτ + φi (t). Here c is the constant

offset, ri and φi are the harmonic amplitudes and phases,
i ∈ (1, . . . ,m), and ω is the respiratory rate. The state vector
model can be defined as

x (t) ,


c(t)
ri(t)
ω(t)
θi(t)

 . (2)

This model is initialized by measuring motion for at least
two breaths (> 10 sec). The initialization data collected
are z̃ , [z(0), z(∆t), . . . , z((N − 1)∆t)]

T , where N refers
to the total number of initialization points and ∆t is the
time between measurement acquisitions (mean sampling rate
∆t = 0.0234 sec for the EM tracking system used). The
harmonic amplitudes and coefficients are then obtained using
a nonlinear least squares estimation. The state estimate at
the moment of initialization is x̂[k|k]. We employ a discrete
time notation where the current time step is t = k. In this
notation convention, x̂[k+M1|k−M2] is the state estimate
at t+M1∆t based on information from t−M2∆t.

This initialization strategy is done for each of the three
axes, generating individual state representation models of
movement in the x-, y-, and z-axes. Models were evaluated
with m = 4 because additional harmonics had minimal
impact on decreasing error at the cost of increased com-
putational costs. An example model is shown in Fig. 5. The
blue line represents the raw EM measurements of the y-
axis. The black line represents the low pass filtered y-axis
with the edge effects removed. The red line represents the
initialized Fourier series model estimate. The mean absolute
error between the y-axis model values and the low pass
filtered measurements was 0.057 mm (σ = 0.041 mm). Not
shown in the figure, the mean absolute model error for the
x-axis was 0.037 mm (σ = 0.027 mm) and for the z-axis
was 0.039 mm (σ = 0.028 mm).
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Fig. 5. Breathing model of low pass filtered y-coordinate motion.

B. Predicting Target Motion

Compensation for cyclical motions requires continuously
measuring the target position and updating the controller
setpoints accordingly. Multiple time delays in the system
cause the catheter motion to lag behind the target, resulting
in poor target tracking. Therefore a multi-step Extended
Kalman Filter (EKF) was designed to continuously estimate
the future target position and adjust the US catheter steering
ahead of time (Fig. 6). The multi-step EKF uses outdated
information (due to the low pass filter window edge effect)
to estimate the target position farther into the future (due to
hardware/software limitations).

Each coordinate of the target position (x, y, z) is filtered
separately. The signal model in (2), x(t), is the state at
a given point in time. The prediction calculations are as
follows. We assume the Fourier components evolve through
a random walk. The state space model for the system is

x̂ [k +M1] = FM [k] x̂ [k −M2] + µ[k], (3)

where FM [k] is the prediction matrix

FM [k] =



Im+1 0

0

1
M∆t 1
2M∆t 1

...
. . .

mM∆t 1


(4)

and µ[k] is the random step of the states. The random steps
are assumed to be drawn from a zero mean multivariate
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Fig. 6. Multi-step EKF uses past reliable information to predict a future
time step. New measurements are used to update the Kalman gains for the
past.
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Fig. 7. Low pass filtered CT displacement and multi-step EKF simulation
from pre-recorded data.

normal distribution represented by the environment uncer-
tainty covariance matrix, Q. The total number of samples to
predict, M , is defined as M = M1 +M2. The EKF predicts
ahead M1 samples due to hardware and software limitations.
M2 refers to the most recently acquired samples which are
not usable after low pass filtering due to the windowing edge
effect.

The second part to the model is

z [k −M2] = h (x̂ [k −M2]) + ν [k −M2] . (5)

Here z [k −M2] is the latest usable measurement of the sig-
nal, h (x̂ [k −M2]) is defined as y [k −M2], and ν [k −M2]
is zero mean Gaussian measurement noise with variance σ2

R.
With this model we estimate the 2m+2 model parameters

of x. The EKF estimates the nonlinear problem by lineariz-
ing about the current state estimate, x̂[k − M2|k − M2].
The prediction for the state x̂ [k +M1] is calculated using
(3). Then (1) is used to calculate the predicted value of the
signal, y [k +M1]. Next we use the current covariance matrix
P [k −M2] to predict the covariance matrix P [k +M1] as
in

P [k+M1|k−M2] = FMP [k−M2|k−M2]FM
T +Q. (6)

The Kalman gain, K [k +M1], is calculated by

K[k +M1] = P [k +M1|k −M2]H[k +M1]TS−1 (7)

S = σ2
R +H[k +M1]P [k +M1|k −M2]H[k +M1]T

and the sensor matrix H [k +M1] is defined by (8).
After predictions for the state, the covariance matrix, and

the Kalman gain are made, the system calculates the esti-
mated target position and then calculates control commands
to navigate the robot. Control commands are given to the
robot actuators while the system waits for the next sensor
measurement. As the next measurement becomes available,
the recent measurements are low pass filtered. The most re-
cent usable low pass filtered measurement is z [k −M2 + 1]
(which represents time t− (M2 + 1)∆t). This new measure-
ment is then compared with the predicted value in order to
update the state estimate, x̂ [k −M2 + 1|k −M2 + 1], and
the covariance matrix, P [k −M2 + 1|k −M2 + 1], as in
(9)-(10).

The covariance matrix, P , is initialized as (11) where σ2
R

is the measurement noise variance, σ2
1 is the uncertainty

of the amplitude components, σ2
ω is the uncertainty of the

fundamental frequency, and σ2
θ is the uncertainty of the

phase components. Trial and error by [22] determined that
σ2
θ = 0.02 rad2. The environment uncertainty covariance

matrix, Q, is a diagonal matrix with all values set to 10−4

except for qω .
1) Predictive Filter Simulation: The EKF was tested on

pre-recorded data from early in vivo animal trials. The low
pass filter edge effect parameter was set to M2 = 35 samples
(0.819 sec). Predictions were calculated for the future time
point at M1 = 20 steps (0.468 sec, experimentally deter-
mined). The first N data points were used for initializing
the breathing model and calculating the first state, covariance
matrix, and Kalman gain. Data points were then given to the
EKF sequentially to simulate the sensors measuring live.

The EKF predicted the state for the future time point. Then
the next measurement was given to the EKF and the multi-
step EKF cycle repeated until the end of the data set. Fig. 7
shows the results of the simulation. The red line represents
the low pass filtered tip displacement. The blue line, which
begins at t ≈ 12 sec after initialization, represents each
predicted signal point based on only pre-existing information.
The mean absolute error between each predicted value and
the measured value was 0.088 mm (σ = 0.114 mm).

IV. CONTROL STRATEGY

The US catheter is accurately navigated by combining
predictive filtering, instrument tracking calculations, distur-
bance rejection inverse kinematics [21], and robot control
[23] as in Fig. 8. Cyclical target movement (zero-phase
low pass filtered to isolate respiratory motion) is modeled
and predicted by the multi-step EKF (Fig. 8 green box).
The pre-kinematics calculations then use the predicted target
location, XTarget,Pred, along with user-defined control mode
to calculate the required US catheter tip space adjustments,
∆X (Fig. 8 yellow box). The ∆X are calculated to either
steer the catheter tip position to meet the target (position-
based tracking) or rotate the US imager to point towards
the target (imager-based tracking). The robust disturbance
rejection inverse kinematics of [21] are then used to calculate
the required joint space adjustments, ∆Φ. The joint space
adjustments are scaled (K < 1) and input to the joint PID
controllers (Fig. 8 orange box). The US catheter handle is
adjusted and the catheter tip is navigated accordingly. This
cycle repeats as the US catheter and target are measured by
sensors. The EKF continuously updates the respiratory mo-
tion model to adapt to slight variations over time, improving
prediction accuracy.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The bench top testing setup is shown in Fig. 9. The robot
was designed to actuate the 4-DOF US catheter handle [23].
The catheter was manually introduced through the introducer
and guided through the plastic IVC tube towards the motion
simulator. The motion simulator is a plastic fixture that
was designed to cyclically move the tracking target (an EM
sensor) at respiratory amplitudes and frequencies.



H[k +M1]T ,

(
∂h

∂x

)T ∣∣∣∣∣
x̂[k+M1|k−M2]=FM x̂[k−M2|k−M2]

=



1
sin θ1[k +M1|k −M2]

...
sin θm[k +M1|k −M2]

0
r1[k +M1|k −M2] cos θ1[k +M1|k −M2]

...
rm[k +M1|k −M2] cos θm[k +M1|k −M2]


(8)

x̂ [k −M2 + 1|k −M2 + 1] = FM x̂[k−M2|k−M2] +K[k−M2 + 1] (z[k −M2 + 1]− h [FM x̂[k −M2|k −M2]]) (9)

P [k −M2 + 1|k −M2 + 1] = (I −K[k −M2 + 1]H[k −M2 + 1])P [k −M2 + 1|k −M2] (10)

P [k|k] = diag
[
σ2
R

N σ2
1

σ2
1

22 . . .
σ2
1

m2 σ2
ω σ2

θ . . . σ2
θ

]
(11)
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Fig. 8. Control diagram for instrument tracking with predictive filtering. (L.V. = left ventricle, R.A. = right atrium)

The EM tracking system has RMS accuracy 1.4 mm and
0.5° and resolution 0.5 mm and 0.1°. The bench top setting
was designed for low magnetic interference. Each robot DOF
was actuated by a brushless DC motor and digital positioning
controllers (Maxon Motors, Switzerland) running internal
servo loops at 1 kHz.

B. Target Tracking: Position Mode

Target tracking tests were done with and without the EKF
in order to demonstrate the benefits of predictive filtering in
cyclical physiological motion compensation. The target was

EM Transmitter

Respiratory Motion
Simulator

Robot

US Catheter
Introducer

Simulated
Vasculature

Catheter Tip

Fig. 9. Bench top experimental setup.

attached to the respiratory motion simulator with period 5 sec
and amplitude ≈ 13 mm. The US catheter was first made to
follow the target without the EKF. The controller reacted to
the measured target motion and adjusted the tip accordingly.
Eleven tests were conducted for a combined total 268 sec
of tracking. An example data set is shown in Fig. 10(top).
The desired x-axis is plotted in blue and the measured tip
x-coordinate is plotted in red.

A similar set of tracking tests was done with the EKF
enabled. Thirteen tests were conducted for 742 seconds of
tracking. An example data set is shown in Fig. 10(middle).
Fig. 10 (bottom) compares the total errors between non-EKF
and EKF tests.

Experimental results are reported in Table I. First, the
mean absolute errors across all tracking tests were calculated
for non-EKF and EKF cases. The total percentage of time
the system maintained the US catheter tip positioning error
within 1 mm and 2 mm was reported for both cases in
Table I and in Fig. 11. Without the EKF enabled, the catheter
tip continuously followed the target except for the moments
when the target changed direction and the catheter lagged
behind it. The position error peaked during each direction
change of the target. The mean of the peak errors and
the mean time delay before catching up to the target were
measured for both non-EKF and EKF cases.
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TABLE I
INSTRUMENT TRACKING POSITION RESULTS.

Metric Without EKF:
Mean (σ)

With EKF:
Mean (σ)

Position error (mm) 2.00 (1.25) 1.59 (1.10)
Time within 1 mm (%) 22.16 31.80
Time within 2 mm (%) 60.97 75.24

Peak error (mm) 4.64 (0.76) 3.68 (0.94)
Time delay (sec) 0.63 (0.12) 0.29 (0.25)

C. Target Tracking: Imager Mode

The target was attached to the respiratory motion simulator
with period 5 sec and amplitude ≈ 16 mm. The system
continuously rotated the US imager to align with the target
while the tip of the catheter was made to stay at the same
position. The angle between the imager and the target ranged
from 0° to 3°, 5°, or 8° for different tests. The results between
tests were similar. Twenty tests without the EKF were done
for a combined total 510 seconds. An example data set,
Fig. 12 (top), shows the error angle between the US imager
and the target.

A similar set of tests was done with the EKF enabled.
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Fig. 12. Pointing the US imager at a cyclically moving target: (top)
Controller tracking error without predictive filtering (non-EKF). (middle)
Controller tracking error with predictive filtering (EKF).
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TABLE II
INSTRUMENT TRACKING IMAGER RESULTS.

Metric Without EKF:
Mean (σ)

With EKF:
Mean (σ)

Angle error (°) 1.15 (1.27) 0.72 (0.78)
Position error (mm) 0.50 (0.37) 0.46 (0.32)
Time within 0.5° (%) 26.89 52.07
Time within 1° (%) 52.92 77.93
Time within 2° (%) 85.65 92.86

Time within 1 mm (%) 90.09 91.34
Time within 2 mm (%) 99.56 99.91

Peak error (°) 2.39 (0.74) 2.01 (1.04)
Time delay (sec) 0.68 (0.40) 0.34 (0.24)

Twenty individual tests were done for a combined total 631
seconds. An example data set is shown in Fig. 12 (bottom).
The results in Table II report many of the same performance
metrics as well as additional metrics regarding US imager
alignment. Mean overall errors are reported for both tip
position and alignment angle. The percentages of time the
US imager was aligned with the target within 0.5°, 1°, and
2° were reported in Table II and Fig. 13.

VI. DISCUSSION

The system successfully applied the multi-step EKF to-
wards steering a cardiac catheter to compensate for cyclical
target motions. Two modes were demonstrated: position
and imager tracking. The position tracking method was



successfully demonstrated at respiratory speeds (not cardiac
speeds due to current off-the-shelf catheter material con-
straints). This is also applicable towards compensating for
higher frequency cardiac motions. The imager tracking mode
demonstrated the clinically relevant task of automatically
re-orienting the US imager towards a target moving at
respiratory speeds.

Bench top experimental target tracking results were re-
ported by several metrics of tracking quality. Position track-
ing mode results demonstrated improvement by EKF in
all categories. Position errors on the order of 1-2 mm
during position-based tracking are sufficient for performing
a wide range of procedures. Imager tracking mode results
demonstrated improvement by EKF in categories related to
angular adjustment. Imager alignment angle errors on the
order of 1-2° and position errors of 1 mm during imager-
based tracking are sufficient for imaging working instruments
and cardiac anatomy. Imager tracking mode results related
to positional adjustments were approximately equal between
non-EKF and EKF tests.

While predictive filtering experiments demonstrated im-
provement, some tracking error still persisted. For example,
Fig. 10(top) showed tracking errors in the x-axis resulting
from a combination of system lag and pull wire mechanics
after direction changes. In Fig. 10(middle) the lag was
mitigated by the predictive filter and the remaining error
was from pull wire mechanics. The y- and z-axes exhibited
similar behavior. Future work aims to manage pull wire
mechanics and further reduce tracking errors.

EKF prediction accuracy may be improved by examining
other cardiac frequency filtering techniques to reduce M2 and
modifying the robot design to reduce M1. Additionally, po-
sition mode target tracking at cardiac speeds can be achieved
by designing custom-built steerable catheters which are ro-
bust to thousands of bending cycles. Future developments in
imager-based tracking will move towards in vivo studies by
compensating for cyclical respiratory motion disturbances to
the catheter while also using predictive filtering to track a
moving target.

VII. CONCLUSIONS

A predictive filtering algorithm was applied towards target
tracking with cardiac catheters. A framework for compensat-
ing for cyclical physiological motions was presented. Bench
top experiments demonstrated two types of motion compen-
sation and tracking at respiratory speeds. The system aims
to improve diagnosis and treatments with cardiac catheters
by automatically providing enhanced intra-procedural US
visualizations of cardiac structures and working instruments.
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