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Abstract— Robotic manipulation in unstructured environ-
ments requires grasping a wide range of objects. Tactile sensing
is presumed to provide essential information in this context,
but there has been little work examining the tactile sensor
signals produced during realistic manipulation tasks. This
paper presents tactile sensor data from grasping a generic
object in thousands of trials. Position error between the hand
and object was varied to model the uncertainty in real-world
grasping, and a grasp outcome prediction was done using only
tactile sensors. Results show that tactile signals are highly
variable despite good repeatability in grasping conditions. The
observed variability appears to be intrinsic to the grasping
process, due to the mechanical coupling between fingers as
they contact the object in parallel, as well as numerous factors
such as frictional effects and inaccuracies in the robot hand.
Using a simple machine learning algorithm, grasp outcome
prediction based purely on tactile sensors is not reliable enough
for real-world responsibilities. These results have implications
for improved tactile sensor system and controller design, as
well as signal processing and machine learning methods.

I. INTRODUCTION

Tactile sensing is essential for robots to perform au-
tonomous grasping and manipulation. Haptic sensing pro-
vides information about the finger-object contact state that
cannot be measured through other sensing modalities such
as vision. A central example of the critical role of tactile
sensing is in estimating grasp stability. If the robot system
can predict that the fingers have not achieved a stable grasp,
then the system can regrasp the object before it is dropped.

The signals from tactile sensors, however, are high-
dimensional and complex, reflecting the many variables that
affect the contact state [1]. To deal with this complexity, a
number of recent studies have used machine learning (ML)
methods to extract pertinent information from tactile sensing
to predict grasp stability [2], [3], [4], [5]. Results to date
have achieved limited correct prediction of grasp stability on
a small range of objects, which is too low for deployment in
unstructured environments such as homes and workplaces.

There are many potential explanations for the lack of
success in learning grasp stability. A major issue for ML in
experimental robotics in general is the burden of obtaining
the large data sets required for adequate training, due to
the high dimensionality of the sensor signals and the large
number of parameters, which for grasping includes object
size, shape, compliance, and friction, and the positions of the
fingers with respect to the object. A related issue is finding
the best ML method and feature set for this application,
considering limited training set size and evolution of tactile
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signals throughout the grasping process. There are also
fundamental questions about the nature of the signals from
tactile sensors. Current experimental grasping systems have
tactile sensors on only a portion of the finger surface, and of-
ten the sensor arrays are flat and stiff. Whether these sensors
provide sufficient information for determining grasp stability
in unstructured environments is, in general, unknown.

In this paper we explore the issue of tactile information
content during the grasping process by examining tactile
signals in detail. The goal is to characterize sensor response,
particularly signal variability and predictability, and relate
this to grasp stability prediction. Experimentally, we limit the
parameter space that must be characterized by looking at a
single spherical object and a single grasp configuration. This
allows the experiments to focus on the role of positioning
errors between the hand and the target object. It also enables
execution of thousands of trials to examine the effects of
training set size.

In the next section of this paper, we begin by describing
the experimental grasping system, followed by characteriza-
tion of the tactile sensor signals. We then use a support vector
machine (SVM) to predict grasp stability, and achieve the
approximately 90% prediction success rate seen in previous
studies. Analysis of sensor signals, however, shows that poor
signal quality that limits ML methods is correlated with
large errors in hand-object position. This implies that a
conservative strategy that predicts grasp success only if the
signals are of high quality will avoid incorrect predictions of
stability that can results in dropped objects.
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Fig. 1. Top: The underactuated hand used here has four actuated degrees of
freedom – three for finger flexion, one for coupled rotation of two fingers to
transition between wrap grasps and pinch grasps. Bottom: Barometer-based
tactile sensors molded into finger contact surface.



II. METHODS AND MATERIALS

A. Underactuated Hand and Tactile Sensors

The system used to characterize tactile signals during
grasping consisted of a three-fingered hand mounted on
a position-controlled robot arm, and a single target object
with a return system that automatically repositioned it with
high repeatability. The robot hand (Fig. 1) is a version of
the compliant, underactuated iHY Hand [6] (Reflex Hand,
RightHand Robotics, Inc., Cambridge, USA). Each identical
finger has two joints, with a revolute pin joint with a return
spring between the palm and proximal link, and an elastomer
flexture joint between the links. Each finger is actuated by a
tendon that passes over both joints to a pulley in the palm
that is connected to a geared DC servo motor. The motor
is driven by a local torque-limited proportional-derivative
position control loop. The combination of spring-loaded
joints and a single tendon allows the fingers to passively
adapt to object shape as the fingers close, without the need
for elaborate sensing and control.

A fourth motor provides coupled rotation of two of the
fingers about their base, shown in Fig. 1. In the experiments
reported here, the fingers are rotated so that all three are
equally spaced at 120 degrees from each other. To provide
a convenient naming convention, the non-rotating finger is
referred to as the thumb, and the other two fingers as the
index and middle fingers, in analogy with the human right
hand. Previous work has shown that the iHY hand is capable
of grasping a large range of objects despite significant
positioning errors [6].

A row of tactile sensors is embedded in each link of each
finger, with five sensors in the proximal link and four in the
distal link. These sensors are based on MEMS barometer
sensors and each surface-mount package contains a pressure
sensor, amplifier, analog-to-digital converter, microcontroller,
and standard bus interface. The resulting tactile sensor sys-
tem has excellent performance, with 0.02 N sensitivity, ap-
proximately 100:1 signal-to-noise ratio, minimal hysteresis,
excellent linearity, and fast sample rate [7].

The hand is mounted on a 6 degrees-of-freedom robot
arm (UR5, Universal Robots, Odense, Denmark), which has
a positional repeatability specification of 0.1 mm. Hand
and arm motion and all sensor processing and logging are
performed under ROS by a computer running Linux. The
sampling rate of the tactile sensors is at approximately 27 Hz.

B. Experimental Protocol

The experimental protocol created here focused on en-
abling execution of a large number of trials with good
repeatability of the environmental conditions, particularly the
spatial relationship between the target object and the fingers.
The grasping target is a generic object — a hollow rubber
ball 65 mm in diameter and 51.5 g in weight. The ball is
sufficiently stiff that it does not deform appreciably under
the grasping forces used here. A thin string is attached to
the ball and passed through a small hole (1 mm) in the table
top. A 200 g weight is suspended below the table on the
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Fig. 2. Experimental setup. A 200 g weight hangs below the table on the
string so that the ball automatically returns to the original position once
released. Thousands of grasp trials with well-controlled position offsets can
be collected using this setup without human supervision.

string. This setup gives the ball the freedom to move laterally
or to be lifted off the table, but the suspended weight will
automatically restore the ball to its original position after
each release. Careful optical measurements showed that the
ball position is highly repeatable, with mean distance of
the ball from the center of the hole of 0.2 mm. This setup
enabled completely automatic and repeatable execution of
grasping trials without human intervention, which is essential
for acquiring the large number of trials.

The grasp sequence starts with the hand descending ver-
tically from its starting location until it reaches a prepro-
grammed height with the finger tips just above the table
top, with no wrist rotation. The fingers then close slowly
and stop upon detecting contact with the object. The tactile
sensor contact detection threshold is approximately 0.12 N
normal force, which preliminary tests showed to reliably
detect contact. Each finger can stop independently; if contact
is not detected, that finger continues closing until flexes to
approximately 100 degrees. Once all the fingers stop moving,
the controller tightens all the finger tendons by an additional
3 mm to increase the grasp force beyond the low-force
contact detection level. The arm then attempts to lift the ball.
Once the arm reaches a fixed height of approximately 20 cm,
it stops, holds the ball for one second while an evaluation
camera take a photograph. The presence or absence of the
ball is the criterion for success or failure of the trial. The
ball is then released as the weight pulled the ball back to the
starting position, and the arm moves the hand to the location
of the next trial. Trials take an average of about 13.5 seconds.

Grasp success vs. hand position. A common source of
grasping variability in unstructured environments is error in
hand-object positioning due to visual perception limitations
and robot inaccuracies. To simulate such variation, the start-



ing positions of the hand were shifted in random small offsets
around the ball, within a space of 9×9 cm surrounding the
ball. A total of 1400 trials were collected, out of which 35%
were successful grasps. In addition, a large number of grasps
were attempted at three locations separated by 1 mm at the
boundary between successful and failure grasps to examine
tactile signal variation in marginal locations in detail.

Rigid object. Our preliminary results suggested that
tactile signals are highly variability despite repeatable hand-
object positioning. This variability could be due object
motion as the fingers first make contact. To investigate this
hypothesis, trials were conducted with the ball rigidly fixed
to the table by screws at its center. The grasping algorithm
was the same as above, but the lifting segment was omitted.
The hand starting location was (x,y) = (0, 1.6 cm), where
the positive x direction goes from the middle finger and
extends toward the index finger, and the positive y direction
goes from index and middle fingers and extends towards the
opposing thumb. This location was determined to be near the
limit of successful grasps and therefore exhibited high signal
variation. The same procedure was also repeated at the same
location, with the ball freely moving on the string, in order
to ascertain the effects of object motion on grasping signals.

SVM prediction. To gain insight into the information
content of the tactile signals, we used a simple linear support
vector machine (SVM) to classify grasp success prior to
liftoff. In this study, we used the following notation:
• D = [oi], i = 1, ...,N denotes a data set with N trials.
• oi = [xi

t ], t = 1, ...,Ti is a trial with Ti samples.
• xi

t = [pi
t ], where p∈R9 is pressure from tactile sensors

Pressure signals from the tactile sensors were normalized
to the maximum magnitude found in all of the sensors across
datasets. A binary label was used to indicate the success and
failure of each grasp. Because trial lengths vary depending
on the timing of the contacts, we aligned the time index of
the trials by setting the start of the lifting process as t100.

A classifier was trained at every 10 time steps using both
a linear SVM and a kernelized SVM with a radial basis
function kernel (RBF). To classify a grasp outcome at a given
time point t, all the xi

t prior to t are concatenated to form the
feature vector f I

t = [pI
0, ...,p

I
t ]. The soft margin parameter C

and RBF parameter γ was optimized through a 10-fold cross-
validation. Different portions of trials were taken out of the
training sets in order to study the effect of training set size
and learning results. The classifiers were tested on 100 trials
that were randomly selected from the testing set of 400.

III. RESULTS

Examples of unfiltered raw signals from two trials are
shown in Fig. 3. For each case, the upper three plots are
the tactile pressure signals for the three sensors on the
distal links, with one plot for each finger. We executed only
fingertip-grasps, so sensors on the proximal link were not
used because the object rarely made contact there. The fourth
plot in each case shows the overall tendon length of each
finger, as measured by the encoders on the motor spools,
and the bottom plot shows the joint angle of the base joint
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Fig. 3. Sensor signals. A: Clear success case. B: Marginal success
case. C&D: corresponding end-of-trial evaluation photographs. E: top: color
legend for the tactile sensors in A&B; bottom: encoder and spool legends.
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Fig. 4. Success rate at each hand offset position. The hand is approximately
centered over the ball at (0,0). The color scale shows % of successful grasps
out of a total trials executed in the 1cm×1cm block. The hand is oriented
so that the thumb points towards positive y, and the fingers point toward
the lower corners.

of each finger, as measured by the joint encoder. In each
case, the plot begins with the fingers starting to close, which
the controller executes by rotating the spools to shorten the
tendons, increasing the angle of flexion, and producing the
observed ramps in the motor spool signals. The base joint
angles follow this ramp trajectory as well, unless contact
with the target object deflects the spring-loaded finger.

Both of the examples shown are taken from successful
grasp trials, though the signals are significantly different.
The case where the ball is enclosed by fingers symmetrically
(Fig. 3A,C), the tactile sensors on each finger record steady
pressures from contact with the object, which leads to suc-
cessful execution of the grasp-and-lift. For the case where the
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Fig. 5. Tactile sensor signals at the margin. These 3×3 plot matrices are raw sensor signals taken at y=0, x={1.5 cm,1.6 cm,1.7 cm}, with 100 trials
at each location. The subplots at each location show the fingers in columns (index, middle, thumb) and the three distal sensors on each finger as rows
(middle-base, middle-tip, tip). Each subplot includes the sensor signals vs. time traces for all 100 trials at that location. t = 0 marks the start of fingers
closing. Blue traces are successful grasps, red traces are failed grasps.

fingers did not result in symmetrical enclosure due to hand-
object position offsets (Fig. 3B,D), the sensors presented
more complex signals. Strong contact pressure signals are
recorded on some fingers, but their magnitudes fluctuated as
the fingers push the target object around between the fingers.
The final grasp configuration was stable but the ball was
resting against the side of one of the compliant fingers.

Some tactile sensor signals show negative responses, e.g.
middle sensors in all fingers in Fig. 3A. This denotes
negative stresses in the rubber fingertip at the location of the
embedded tactile sensor, due to shear forces on the fingertip
surface. These negative signals have been noted in previous
work on tactile sensing, beginning with Fearing’s work on
object shape estimation using tactile sensors [8].

Grasp success vs. hand position. Fig. 4 shows the
success rate at each location in the 9×9 grid of hand
locations. The fingers fail to contact the ball in regions
beyond this grid, so grasp failure is certain. Within the grid,
100% of grasps are successful when the hand is positioned
within a central band approximately 5 cm wide in x and
6 cm in y. It is approximately symmetric in the x direction
and heavily biased in the y towards the thumb, because the
ball can get wedged between the paired middle-index fingers.

The marginal regions between the success and failure
regions in Fig. 4 show that there are locations where mil-
limeter shifts in hand-object position offset produce different
outcomes. Fig. 5 examines this situation in detail. These plots
show tactile signals from one hundred trials at each of three
locations that span 3 mm, where the grasp outcome drops
from 100% success to 100% failure, with the intermediate
location showing a mix of successes and failures. More
importantly, although there are clear differences in the tactile
signal patterns between the 100% success and 100% failure
locations, at the intermediate location there is no clear
difference between the signals from successful grasps and
those from failures: success and failure trial signals are
overlapping, with similar trajectories.

Rigid object. The trials examining contact sensor signals
at the initial stages of grasping showed that when the
ball is rigidly fixed to the table and cannot move due to
finger contact, the contact signals are repeatable (Fig. 6B).
All traces have very similar time courses, with clear step
transitions when the fingers make and break contact with the
ball. There is some variability in signal magnitude, which
may in part be attributed to re-zeroing the sensors before
each trial. In contrast, in trials where the ball is free to
move (Fig. 6C), the fluctuation of signals is obvious, with
much greater variability between the trials. Although contact
is made on all three fingers when the ball is free to move,
we see the clean step signal in only a handful of trials.

SVM prediction. The previous results demonstrated that
both grasp success rates and tactile sensor signals can be
highly variable from trial-to-trial despite good repeatability
of the hand-object relative position. Furthermore, relation-
ships between grasp success and tactile signals is not readily
apparent in marginal locations (Fig. 5). One of the advan-
tages of machine learning methods, however, is that they can
uncover higher-order relationships among signals.

Figure 7 shows the SVM grasp stability prediction as a
function of time. The success of the prediction at each time
point was quantified in terms of the Area Under the Curve
(AUC) of the Receiver Operating Characteristic (ROC). The
prediction success plateaued at 0.80 at the time of lift.
Classifiers that were trained using few data points (e.g. 50
trials) reached only 0.75. Training with significantly more
data (e.g. 800 trials) did not perform better than training
with 200 trials. The nonlinear RBF kernel did improve the
prediction performance to 0.90, but also plateaued regardless
of increased training samples.

A. Using variability and location to predict stability

The above results establish that tactile signals are variable
in general, and highly variable at marginal locations. These
are the locations where the hand is several cm away from
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Fig. 6. Sensor variability at the onset of grasping. A: Color legend for
sensor plots B&C. B: Signals from onset of grasping when the ball is fixed.
C: Signals when the ball is tethered by the string and weight. The columns
in B&C represent the fingers, and the rows represent the three distal tactile
sensors, with the tip sensors on the bottom.

centered over the object and the grasp outcome transitions
from 100% success to 100% failure (Fig. 4). In the following
section we discuss the reasons for this behavior, but the data
clearly supports the conclusion that both grasp stability and
tactile signals are unreliable away from the center.

This suggests that an alternative strategy for predicting
grasp stability from tactile signals. Rather than attempting to
predict stability for grasps anywhere in the workspace, we
can detect when the tactile signals are strong and consistent.
Fig. 3A shows that for strong grasps, the distal sensors on
all three fingers produce large, clear signals. For successful
grasps that do not make consistent contact with the fingers
(Fig. 3B), finger configuration in those grasps are usually
not ideal (Fig. 3D). Therefore, if we only trust tactile
sensors when the signals are loud and clear, we automatically
eliminate the contorted grasps.

This is a conservative strategy in the sense that it cannot
detect every stable grasp. Fig. 4 shows that successful grasps
occur up to 5 cm from the centered location. However, This
conservative strategy minimizes the likelihood of a false
positive (incorrectly predicting a grasp is stable), which can
lead to dropping the object. The concomitant increase in false
negatives (incorrectly predicting a grasp is unstable) leads to
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Fig. 7. Area Under the Curve (AUC) of the Receiver Operating Charac-
teristic (ROC) for grasp outcome prediction. A prediction is made at every
10 sample intervals. Solid lines are results from a linear SVM trained using
different numbers of samples. Dotted magenta line is the plateau reached
by SVM with radial basis function kernel. T0 is the time of lift for all trials.
The baseline is at 0.65 due to bias in sample groups.

unnecessary regrasping, but this is presumably preferable to
false positives in most applications.

We examined a variety of parameters derived from the sen-
sor signals, and found strong correlation between locations
with 100% grasp success and the total pressure measured
at the distal link of each finger. Fig. 8 plots the spatial
distribution of the smallest sum of tactile pressures on one
finger, min j{∑3

i=1 pi, j}, where pi, j is the pressure at the ith
sensor on the jth finger. This parameter is strongly peaked
near the location where the grasp is symmetric and the tactile
sensors received consistent and strong signals.

We can create a very simple deterministic classifier that
labels a grasp as stable if the minimum-pressure-sum is
above a threshold, which is set so that the included regions
in Fig. 8 fall within the region of 100% successful grasp
trials in Fig. 4. For demonstration purposes we selected
a threshold of 1.0, corresponding to the top contour in
Fig. 8. The resulting prediction success is plotted in Fig. 9,
along with the SVM results from above for comparison.
This deterministic prediction provides a low 72% correct
prediction rate, compared to approximately 90% for the SVM
classifier. The more important false positive rate, however, is
only 0.3%, while the rate for SVM is about 5%. This suggests
that even a simple strategy that takes into account the quality
of the tactile signals can drastically improve grasp stability
prediction.

IV. DISCUSSION

A. Machine Learning of Grasp Stability

Previous attempts to use ML-based techniques to as-
sess grasp stability achieved only limited success, typically
around 90% or less [2], [3], [4], [5]. These studies were
based on the assumption that tactile signals contain sufficient
information to discriminate grasp success from failure. The
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results presented here suggest that tactile signals can be so
variable that they cannot serve this function, at least not
for all grasping situations in unstructured environments. In
particular, the results in Fig. 5 show that the tactile signals
produced in grasps with marginal stability are not well-
correlated with grasp success. ML methods are thus unable
to learn to discriminate stable from unstable grasps for these
cases, and their inclusion in training and testing data reduces
overall prediction rates below the very high level required for
applications in unstructured environments.

One solution to this problem is to limit prediction of
stability to cases where the tactile signals are unambiguous.
In the limited context considered here, high-quality tactile
signals occur in the regions where grasp stability is excellent.
This means that a simple strategy of detecting good signal
levels on all three fingers can be used to predict that
the grasp will succeed, with excellent accuracy. While this
deterministic type of prediction method reduced the overall
prediction accuracy when compared to SVM classification,
the false positive rate dropped to 0.3% — much closer to
application requirements.

This approach, however, applies more generally than the
specific experimental situation examined here. In unstruc-
tured environment, grasps should be conservative, with a
large safety margin to allow for unmodeled and unsensed
perturbations. Our experiment shows that the traditional
“grabbed or dropped” definition of grasp stability may not be
a good evaluation metric. For example, the grasp shown in
Fig. 3B,D is stable, but the object is restrained by the side of
one finger, rather than all three finger tips as in Fig. 3A,C.
This grasp has asymmetric contact locations and relies on
high friction to achieve force closure, which could lead to
instability in subsequent manipulation. Additionally, most
robot hands are designed with tactile sensors located on the
main grasping surfaces, so that signals are only trustworthy
when contacts are on the main surface. Therefore a more
sophisticated success metric should discount grasps where
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contacts are made at where the sensors are not credible.
A key question for these results is their generality: to

what extent do they depend on the specific hardware and
experimental protocol used here? The problem of obtaining
good tactile signals while grasping in unstructured environ-
ments is certainly not limited to this grasping system. Many
robot hands have flat links on the intended grasping surface
(e.g. the Barrett and Schunk Hands), with flat, stiff tactile
array sensors. Aligning these finger surfaces with object
surfaces to achieve good grasp and strong tactile signals
can be challenging. To some extent this can be mitigated
by other elements of the grasping system, e.g. better object
localization by the vision system, better shape modeling by
the perceptual system, etc. Recent studies have begun to
consider the problem of finger re-positioning based on tactile
signals [3], [4]. All of these approaches can help to generate
the high-quality tactile signals that are needed to validate
grasp quality.

B. Variation in Grasping and Tactile Signals

One of the main results of this study is the character-
ization of the variability of tactile sensor signals during
grasping tasks. By using a single generic object, tightly
controlling the relative position of the hand and object, and
executing many repetitions of the grasping process under
similar conditions, we were able to isolate the fundamental
variability of the grasping process. The results show that
even if the hand and object pose were repeatable to within
1 mm, there are marginal locations where grasp success
or failure were equally likely. Furthermore, tactile signals



showed great variability, and in the marginal locations there
was no straightforward means to distinguish the signals of
success trials from failure trials.

This suggests that the observed tactile signal variability is
largely due to physical factors in the grasping process itself.
It appears that a major factor is the mechanical coupling
between the fingers through the grasped object. The fixed-
ball experiment (Fig. 5) shows that because fingers act in
parallel mechanically, interactions at one finger perturb the
contacts at the other fingers, and mm-scale differences in
object position cause significant changes in the resulting
interaction forces and tactile signals. Seen from the viewpoint
of forces applied to the object and the resulting behavior,
these results are not specific to the hand hardware used
here; other hand designs that execute a similar grasp strategy
would likely produce the same object behavior. While the
compliance of the fingers in this experiment allowed fingers
to deflect during grasping which may have increased vari-
ability, stiff fingers would tend to perturb the object position
and potentially increase variability as well.

More sophisticated machine learning methods than SVM
can no doubt be effective in dealing with the higher-
dimensional parameter space of diverse object in diverse
settings; however, to train a system to handle all the vari-
ations that exist in unstructured environment would require
experiments with a much wider variety of objects and grasp-
ing tasks. Because real-world robotic data takes considerable
time and effort to obtain, exhaustive data will be challenging
to obtain. These results also raise questions about the role of
simulation in grasping; can and should simulations capture
the intrinsic variability and the effects of mm-scale displace-
ments which were shown to greatly affect grasp success and
tactile signals?

C. Implications for hands and tactile sensing systems

To the best of our knowledge, this is the first study to sys-
tematically examine tactile signals during realistic grasping
tasks. This study provides strong motivation for interweaving
sensor design, controller and manipulator design, and system
integration. The barometer-based tactile sensors used here
have high-quality analog-to-digital conversion within the
sensor chip, so the resulting digital signals are very clean by
the conventional measures that have been used in the litera-
ture to evaluate tactile sensors (i.e. excellent signal-to-noise
ratios, high linearity, low hysteresis, etc.). The fixed-ball
experiment demonstrated good signal reproducibility when
the complexity of the mechanical interaction is removed,
confirming the functionality of the sensors. Nonetheless,
the results here showed large variability in tactile signals
once the sensors were integrated into a hand and used in
realistic tasks, due to the high variability of hand-object
interactions in the real world. Hence benchtop tests are
not sufficient for predicting tactile sensor performance in
integrated grasping systems. Experimental testing of sensor
systems in realistic manipulation tasks should be an essential
part of the characterization process going forward.

V. CONCLUSIONS

This study demonstrated that under realistic scenarios,
grasping is intrinsically variable. Fingers are coupled to
the target object and thus to each other, and friction is
nonlinear and difficult to predict. This means that small
changes in contact conditions can lead to different grasping
outcomes. Concomitantly, the signals from tactile sensors
are also highly variable. A simple SVM implementation
extracted important grasping information from the tactile
signals, but even in this carefully-constrained task, the rate of
successful grasp stability prediction only reached about 90%
accuracy at the point of lift. A more conservative strategy
of predicting stability only when tactile signals are strong
on all fingers achieved far lower false positive predictions,
but requires regrasping of a significant fraction of nominally
stable grasps. More sophisticated learning algorithms may
resolve the complexities in environments with few sources of
variation, but given the wide variety of objects and tasks that
a grasping system must face in the unstructured real-world,
a fundamental understanding of variability sources in the
tasks and grasping system can inform the balance between
designing better sensor systems, investigating more complex
learning algorithms, and developing variation-resistant con-
trollers.
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