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Abstract

Robotic manipulation in unstructured environ-
ments must handle a wide range of objects de-
spite errors in visual perception. Tactile sens-
ing is presumed to provide essential information
in this context, but there has been little work
examining the tactile sensor signals produced
during realistic manipulation tasks. This pa-
per presents tactile sensor data from grasping
a generic object in hundreds of trials. Position
error between the hand and object was varied
to model the uncertainty in real-world grasping.
Results show that tactile signals are highly vari-
able despite good repeatability in grasping con-
ditions. The observed variability appears to be
intrinsic to the grasping process, due to the me-
chanical coupling between fingers as they con-
tact the object in parallel, and due to numer-
ous factors such as frictional effects and inac-
curacies in the robot hand. These results have
implications for improved tactile sensor system
design and signal processing methods.

1 Introduction

Grasping is essential for many real-world applications
of robotics. Tactile sensing is presumed to be a neces-
sary component of autonomous grasping systems, be-
cause it provides information about the finger-object
contact state that determines grasp success, and this
information cannot be obtained through other sensing
modalities like vision. Tactile sensing has the potential
to enable robots to autonomously grasp and manipulate
a wide range of objects in unstructured environments
like homes and workplaces.

Although there has been considerable progress in the
development of tactile sensors, the principles and tech-
niques for integrating tactile sensors into real-time con-
trol of grasping remains a major challenge. Work on tac-
tile signal processing has produced theoretical analysis

of finger-object mechanical interactions to estimate con-
tact location and object shape from tactile arrays [Fear-
ing and Hollerbach, 1985], [Fearing, 1990], and control
algorithms for robot fingers that use tactile signals to
produce desired object motions [Maekawa et al., 1995].
There has, however, been little experimental work char-
acterizing and analyzing real tactile signals produced
during grasping tasks. Recent work on using tactile
sensors with machine learning has involved system-level
experimental testing with diverse everyday objects, but
this work has focused on learning methods without con-
sideration of the details of the tactile signals [Bekiroglu et
al., 2011a], [Bekiroglu et al., 2011b], [Dang et al., 2011],
[Dang and Allen, 2014].

Figure 1: Top: The underactuated hand used here has
four actuated degrees of freedom – three for finger flex-
ion, one for coupled rotation of two fingers to transition
between wrap grasps and pinch grasps. Bottom: Tactile
sensors molded into finger contact surface.



This study provides the first detailed look at tactile
sensor signals during realistic grasping tasks. In this
setting, the relationship between the hand and target
object is not perfectly regulated, due to the lack of a
priori knowledge of object properties, errors in visual
guidance, and inaccuracies in robot hand control. In
this study, the approach is to limit the experiments to
a single generic object, with a large number of trials
under repeatable environmental conditions. We system-
atically vary hand-object positioning error, to model the
uncertainty in real-world grasping tasks. In the follow-
ing, we first describe the compliant underactuated robot
hand and tactile sensing suite that we developed for un-
structured environments. We then present sensor signals
from hundreds of grasping trials, and analyze the results
in terms of variation with task properties. We conclude
with a discussion of the implications for the design tactile
sensing systems and signal processing techniques, includ-
ing machine learning.

2 Experimental methods

2.1 Underactuated hand and tactile
sensors

The robot hands used in this experiment is a slightly sim-
plified version of the iHY Hand [Odhner et al., 2014] (Re-
flex Hand, RightHand Robotics, Inc., Cambridge, USA).
This is a compliant, underactuated hand with three fin-
gers (Fig. 1). Each identical finger has two joints, with
a simple revolute pin joint with a return spring between
the palm and proximal link, and an elastomer flexture
joint between the links. Each finger is actuated by a
tendon that passes over both joints to a pulley in the
palm that is connected to a geared DC servo motor (Dy-
namixel RX-28, Robotis, South Korea). The motor is
driven by a local torque-limited proportional-derivative
position control loop. Encoders on the motor-driven
spool that pulled the tendons as well as on each finger
base joint provide proprioceptive motion sensing. The
combination of spring-loaded joints and a single tendon
allows the fingers to passively adapt to object shape as
the fingers close, without the need for elaborate sensing
and control.

A fourth motor provides coupled rotation of two of
the fingers about their base. At one limit of rotation,
the fingers articulate in parallel and oppose the third
finger to perform power or wrap grasps; this is the con-
figuration shown in Fig. 1. At the other limit, the two
fingers rotate to oppose each other for precision fingertip
grasps. Intermediate configurations are possible as well;
in the experiments reported here, the fingers are rotated
so that all three are equally spaced at 120 degrees from
each other. To provide a convenient naming convention,
the non-rotating finger is referred to as the thumb, and
the other two fingers as the index and middle fingers, in
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Figure 2: Experimental set up.

analogy with the human right hand. Previous work has
shown that iHY hand is capable of grasping a large range
of objects despite significant positioning errors. Please
see [Odhner et al., 2014] for further details of the hand
design and performance.

A row of tactile sensors is embedded in each link of
each finger, with five sensors in the proximal link and
four in the distal link, including one in the tip. These
sensors are based on MEMS barometer sensors and in-
clude a silicon micromachined pressure sensor, preci-
sion instrumentation amplifier, high-resolution analog-
to-digital converter, a microcontroller, and a standard
bus interface. By leveraging the engineering investment
in these sensors (which were developed for high-volume
mobile phone applications), the resulting tactile sensor
system has excellent performance, with 0.02 N sensitiv-
ity, approximately 100:1 signal-to-noise ratios, minimal
hysteresis, good linearity, and fast sample rates. Details
of the tactile sensor system fabrication and performance
are provided in [Tenzer et al., 2014].

The hand is mounted on a 6 dof robot arm (UR5,
Universal Robots, Odense, Denmark), which positions
the hand using the grasping controller described below.
Hand and arm motion and all sensor processing and log-
ging are performed under ROS by a personal computer
running Linux.



2.2 Procedure

The goal here was to create an experimental protocol
that enabled execution of a large number of trials, with
good repeatability of the environmental conditions, par-
ticularly the relationship between the target object and
the fingers. This can enable, for the first time, quan-
tification of the variability of the tactile sensor signals
as the grasping task parameters are varied. This goal
was accomplished here by using a single, generic target
object, a solid rubber ball approximately 65 mm in di-
ameter (Fig. 2). To automatically return it to the same
location for repeated grasping trials, it was attached to
a thin string that passed through a 2 mm hole in the ta-
ble top, and connected to a 200 g weight suspended only
by the string. Following each grasp, the hand released
the ball, and the weight pulled it into the same location
on the table top for the next trial. The mean variation
of the ball’s location between trials was approximately
1.1 mm.

At the start of each trial, the hand moved from its
starting location directly downwards. The hand de-
scended until it reaches a preprogrammed fixed height
with the finger tips just above the table top, with no
rotation of the wrist. The controller then began to close
the fingers, which stopped upon detecting contact with
the object. The threshold for contact detection from
the tactile sensors on the distal link was set to approxi-
mately 0.12 N normal force, which was found in prelim-
inary tests to reliably detect contact. (Tactile sensors
on the proximal link were not used in this study as this
link made only occasional contact with the target object
during grasping.) Each finger could stop independently;
if contact was not detected, that finger continued clos-
ing until it reached a predetermined joint limit, with the
fingers flexed to approximately 100 degrees. After all fin-
gers stopped, the controller tightened all the tendons by
approximately 3 mm; this step increased the grasp force
beyond the low-force contact detection level to provide
enough grasp force to lift the ball.

The arm then attempted to lift the ball. Once the
arm reached a fixed height of approximately 20 cm, it
stopped and an evaluation camera took a photograph to
record the presence or absence of the ball, which was
the criterion for success or failure of the grasping trial.
The ball was colored orange to permit simple and reli-
able segmentation from the dark fingers and background
in the photograph (Fig. 2). The controller then opened
the fingers to release the ball; the weight pulled the ball
back to the starting position, and the arm moved the
hand to the location of the next trial. It took on aver-
age approximately 3.5 sec from start of finger closing to
start of lifting (depending on how far the fingers move
before stopping), and about another 10 sec from end of
finger closing until the ball is lifted, photographed, and

released. This setup enabled completely automatic and
repeatable execution of grasping trials without human
intervention, which is essential for acquiring the large
number of trials for sensor characterization.

A common source of grasping variability in unstruc-
tured environments is errors in object position estima-
tion due to visual perception limitations and robot hand
and arm inaccuracies, which produce errors in position-
ing the hand with respect to the target object. To study
the ability of tactile sensing to detect and correct this
type of error, we performed two experiments. The first
preliminary experiment was designed to characterize the
overall grasping ability of the hand system and control
algorithm, and determine the range of hand-object off-
sets that results in successful grasps. For this experi-
ment, the horizontal position of the hand was varied over
a range of 8 cm in both x and y directions. The hand
was initially roughly centered over the ball manually to
establish the center of the test offset grid, then the con-
troller moved the hand in 1 cm increments, executing
one trial at each of the 8x8 locations. The controller re-
peated the entire grid 16 times, for a total of 1024 trials.

The second experiment was intended to explore in
greater detail the repeatability of tactile sensing signals
during grasping. The hand was initially placed in a lo-
cation where it was nearly centered over the ball, then
moved laterally in seven 1 mm increments. At each po-
sition increment the system performed 20 grasping trials
as described above. The locations were selected on the
basis of the first experiment so that in the initial loca-
tion, the hand successfully grasped the ball in every trial,
and at the final location, the hand was unsuccessful in
grasping the ball in every trial. Intermediate locations
showed decreasing success rates from initial to final lo-
cations.

2.3 Results

First experiment

In the 8x8 test grid, the system achieves 100% success
when the hand is positioned within a central band ap-
proximately 3 cm wide in x and 6 cm in y, where the
positive y direction goes from the thumb to the opposing
index and middle fingers. Most locations immediately
adjacent to this central zone have intermediate success
rates, while at greater distances from centered the grasp-
ing success rates generally go to zero. This provides a
variety of success rates for subsequent analysis of tactile
sensor signals.

Fig. 3 shows the variation of the sensor signals from
the hand as a function of time during typical trials for
four cases, ranging from uniform failure to uniform suc-
cess. For each case, the upper three plots are the tactile
pressure signals for the four sensors on the distal links,
with one plot for each finger. The fourth plot in each
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case shows the overall tendon lengths of each finger, as
measured by the encoders on the motor spools, and the
bottom plot shows the joint angle of the base joint of
each finger, as measured by the joint encoder. The joint
angle of the distal flexture joint can be estimated by
the difference between the tendon length and the base
joint angle, but for simplicity we elected to work directly
with the raw encoder signals in this study. In each case,
the plot begins with the fingers starting to close, which
the controller executes by rotating the spools to shorten
the tendons, producing the observed ramps in the mo-
tor spool signals. The base joint angles follow this ramp
trajectory as well, unless contact with the target object
deflects the spring-loaded finger.

In the clear failure case (Fig. 3B), the upper plot shows
that at about 40 samples after the start of the trial, the
middle-tip tactile sensor on the index finger registers a
contact, and the lower plots show that the index finger
stops closing, while the other fingers continue to close.
After about 60 samples, however, the middle finger joint
encoder and tactile sensors show small perturbations,
presumably due to glancing contact with the offset tar-
get object. At this time the tactile signal from the index
finger also decreases, as the object is apparently pushed
aside by the other finger. At about 80 samples the mid-
dle finger and thumb have reached the limit of travel
without detection of a contact, so the controller stops
their motion. The controller then applies the slight tight-
ening of the tendons (visible in the motor spool signal for
the index finger) to apply sufficient grasp force for lifting,
and raises the arm. Because contact was not established
on the fingers, the ball is not lifted.

Similar sequences of events are visible in the other
cases. In the clear success case (Fig. 3D), the tip tactile
sensor on each finger records steady pressures from con-
tact with the object, which leads to successful execution
of the grasp-and-lift. The marginal cases (Fig. 3B,C)
present more complex signals. Strong contact pressure
signals are recorded on some fingers, but their magni-
tudes vary greatly as the fingers presumably push the
target object around between the three fingers. In the
marginal failure case (Fig. 3B), contact is apparently
achieved on all three fingers because the the ball is ini-
tially lifted, but the ball slips from the fingers at about
230 samples, causing the tactile pressures to drop to zero
and the joint angles to jump forward as the ball leaves
the hand. Note that a consistent pressure signal is not
obtained on the middle finger after an initial transient,
although the finger must have provided enough force to
enable lifting the ball. Similar observations apply to the
marginal success case (Fig. 3C).

Some of the tactile sensor signals show negative re-
sponses during the trials, e.g. middle-tip sensor on the
index finger around 100 samples in Fig. 3A and middle-

tip sensor on the index finger around 70 samples in
Fig. 3C. These signals denote negative stresses in the
rubber fingertip at the location of the embedded tac-
tile sensor, due to shear forces on the finger tip surface.
These negative signals had been noted years ago in the
context of object shape estimate using tactile sensors but
their relevance for grasping and manipulation had not
been apparent [Fearing and Hollerbach, 1985], [Fearing,
1990].

Second experiment

Fig. 4 shows the tactile sensor signals for the 1 mm incre-
mental displacement experiment. A 3x3 matrix of plots
is shown for each of the seven 1 mm position increments.
Columns show the tactile signals for the sensors on
each finger (left=index, center=middle, right=thumb),
and rows show the three distal sensors (top=middle-
base, center=middle-tip, bottom=tip); the base sensor
is omitted as it is almost uniformly zero. The success
rate progresses from all-successful trials (shown in blue)
at the initial location to all-failure trials (shown in red)
at the final location.

All of the plots show considerable variability at each
location, despite the reasonably good repeatability of
test conditions. Even at the initial location, where the
grasping system achieves a successful in grasp every trial,
the tactile signals are not consistent. The tip sensors
on all three fingers, which have the greatest response,
show initial transients of different heights and at differ-
ent times, as the ball is pushed between the fingers.

In the intermediate locations, which have a mix of suc-
cesses and failures, there is no clear difference between
the signals from successful grasps and those from fail-
ures. For example, the plots for the location 3 mm from
the start (Fig. 4 top row, right), have success and failure
traces intermingled, with nearly identical traces in each
category.

As a preliminary means of investigating whether there
are aspects of the tactile sensor signals that change with
the variation in location and success rate, Fig. 5 shows
basic statistical measures at each of the 1 mm incre-
mental locations. For each finger, the mean of all sam-
ples for all 20 trials for the signals from the three distal
tactile sensor is plotted, along with the standard devi-
ations. While strong conclusions are not reasonable to
draw from this limited analysis, the plots show an in-
crease in the mean signal for the index finger and de-
crease for the middle finger as the hand moves later-
ally. The standard deviations also show increases and
decreases in parallel with the means for these fingers.

3 Discussion

This study aimed to characterize the variability of tactile
sensor signals during grasping tasks. By using a single



Figure 4: Tactile sensor signals vs. time as the hand moves in 1 mm increments, with 20 trials at each location.
The 3x3 matrix of subplots at each location show the fingers as columns (index, middle, thumb) and the three distal
sensors on each link as rows (middle-base, middle-tip, tip). Each subplot includes the sensor signals vs. time traces
for all 20 trials at that location. Blue traces are successful grasps, red traces are failed grasps. Photographs show
hand-object relationship at conclusion of grasp for the first four locations.

generic object and controlling the relative position of
the hand and object, many repetitions of the grasping
process under similar conditions were executed, so trial-
to-trial variation could be examined. The results show
that even under these constraints, tactile signals showed
great variability. Furthermore, there was little apparent
difference between the characteristics of tactile signals
for successful grasping trials and failures.

There are likely a number of factors leading to this
high variability. In terms of the experimental procedure,
the relative position of the hand and object was not per-
fectly controlled. One significant source of variation was
due to the target ball return string, which accounted for
about 1 mm of position variation between trials. An-
other likely source was the robot hand’s fingers, which
are compliantly mounted and include an elastomer flex-
ture joint. This compliance permits the hand to pas-
sively adapt to object geometry without active sensing
and control, but it also means the fingertip positions are
not uniquely determined by the motor positions. The use
of 20 sequential trials repeated at identical time intervals
at each location should, however, minimize this source of
variability. In addition, the data showed significant dif-

ference in tactile signals and success rate at each of the
1 mm position increments, which implies that the vari-
ability in the experimental setup was not so large that
the effects of mm-scale displacements were swamped.

This implies that the observed tactile signals variabil-
ity is largely due to factors in the grasping process itself.
From detailed observation, it appears that a major factor
is the mechanical coupling between the fingers through
the grasped object. Because fingers act in parallel me-
chanically, interactions at one finger necessarily perturb
the contacts at the other fingers. In addition, the non-
linear friction of polymer fingertips leads to transients
as fingers stick and slip on the target object. A further
complication is that the shear forces generated by fric-
tion can be confounded with normal forces to greatly af-
fect the stress levels at the locations of the tactile sensing
elements within the polymer coverings of the finger sur-
faces. While the ball-return string adds an “unnatural”
constraint, an unconstrained object could also displace
as the fingers make contact and apply forces. Similarly,
stiff finger transmissions would reduce finger positioning
inaccuracy, but experiments with underactuated hands
have shown lower interaction forces in unstructured en-
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3.1 Historical context

The main role of this study is to define and bring at-
tention to a fundamental challenge in the quest to de-
velop autonomous grasping and manipulation systems.
It is perhaps surprising that no one has looked at tactile
signals during realistic manipulation tasks in the past.
Until recently, each of the areas associated with grasp-
ing worked largely independently: hand designers were
principally focused on the challenge of designing anthro-
pomorphic hands; tactile sensor researchers worked to
find good transducers and integrate them into finger-
level sensors; while systems developers used parallel-jaw
grippers (particularly the PR-2) and employed tactile
signals only for the most basic validation of grasp.

We have worked over many years to develop control
algorithms that use tactile sensors signals to enable ro-
bust grasping in unstructured environments. In this ef-
fort we constantly fought tactile sensor signal “noise.”
Then a few years ago we developed MEMS barometer-
based tactile sensors [Tenzer et al., 2014]. These sen-
sors have high-quality analog instrumentation and A-
to-D conversion within the sensor chip, so the resulting
digital signals are very clean by conventional measures,
i.e. excellent signal-to-noise ratios, high linearity, low
hysteresis, etc. Nonetheless, when we succeeded in in-
tegrating these high-quality sensors with our compliant
robot hands, we still observed large variability in tactile
signals. This study aims to quantify these effects and to
draw the attention of other researchers to this issue.

3.2 Potential solutions

These results underscore the need for tactile sensor-
based control methods that are immune to high vari-
ability. One approach is the contact-based grasp control

approach used here, where discrete events are extracted
from the continuous sensor signals, which provides some
immunity from signal variations. For more sophisticated
control needs, such as predicting grasp stability or se-
lecting corrective actions to prevent dropping objects,
more information must be extracted from the signals.
Machine learning seems appropriate here because tac-
tile signals are high-dimensional and noisy, and accurate
models that can enable control despite noisy signals have
proved difficult to define. The coherent change in simple
statistical measures as the hand changes location (Fig. 5)
suggests that helpful information is present in the tactile
signals.

The human model may provide guidance for hand-
system design. Human finger tips have only moderate
coefficients of friction, but do not generally have the
stick-slip behavior of soft polymers, which can lead to
transients in surface loading. In addition, human fin-
ger pads are very soft, which minimizes changes in con-
tact force levels as the fingers interact through the ob-
ject. Unfortunately, this makes tactile sensing particu-
larly challenging: sensors must be compliant for mount-
ing in the “skin” surface, as sensors beneath a highly
compliant layer will suffer from low sensitivity and poor
spatial resolution [Fearing and Hollerbach, 1985], [Fear-
ing, 1990].

Improving tactile sensor systems will require a shift
in research focus, away from the development of trans-
ducers that has been the main emphasis until now, to
a focus on system-level integration with hands to pro-
vide the best signals during grasping and manipulation.
This necessarily includes consideration of the finger sur-
face materials and sensor placement within the fingertip.
Testing of sensor systems in realistic manipulation tasks
will be an essential part of this process.

3.3 Conclusions

These studies are the first to use highly-repeatable grasp-
ing tasks with large numbers of trials to enable the
study of variability in tactile sensor signals. The results
demonstrate that tactile signals are messy - not due to
limitations in the sensors themselves, but due to the high
variability of hand-object interactions in the real world.
Making tactile sensing effective in autonomous grasp-
ing and manipulation will require better designs that
account for integration of sensors and hands, and new
signal processing and control methods such as machine
learning that can deal with high dimensionality and high
variability in the signals.
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