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Abstract

Registration of three-dimensional ultrasound (3DUS) volumes is necessary in several applications, such as when stitch-
ing volumes to expand the field of view or when stabilizing a temporal sequence of volumes to cancel out motion of the
probe or anatomy. Current systems that register 3DUS volumes either use external tracking systems (electromagnetic or
optical), which add expense and impose limitations on acquisitions, or are image-based methods that operate offline and
are incapable of providing immediate feedback to clinicians. This paper presents a real-time image-based algorithm for
rigid registration of 3DUS volumes designed for acquisitions in which small probe displacements occur between frames.
Described is a method for feature detection and descriptor formation that takes into account the characteristics of 3DUS
imaging. Volumes are registered by determining a correspondence between these features. A global set of features is
maintained and integrated into the registration, which limits the accumulation of registration error. The system operates
in real-time (i.e. volumes are registered as fast or faster than they are acquired) by using an accelerated framework on
a graphics processing unit. The algorithm’s parameter selection and performance is analyzed and validated in studies
which use both water tank and clinical images. The resulting registration accuracy is comparable to similar feature-based
registration methods, but in contrast to these methods, can register 3DUS volumes in real-time.
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1. Introduction

Three-dimensional ultrasound (3DUS) has many bene-
fits in that it is inexpensive, portable, non-ionizing, and
capable of accurately imaging fast moving structures such
as heart valves. However, there are several applications
in which the information contained in a single 3DUS vol-
ume is insufficient and multiple registered 3DUS volumes
are necessary. Applications include creating large field-
of-view (FOV) mosaics from smaller FOV 3DUS volumes
(Poon and Rohling, 2006), stabilizing a temporal sequence
of 3DUS volumes to account for motion of the probe or
anatomy (Shekhar et al., 2004), and/or compositing im-
ages of the same anatomy acquired at various probe lo-
cations to improve image quality (Rajpoot et al., 2011).
In these applications, it is clinically desirable to register
volumes in real-time (i.e. as fast or faster than the vol-
umes are acquired) so as to provide immediate feedback
to clinicians.

Depending on the application, 3DUS volumes are regis-
tered in either a rigid or non-rigid fashion. Rigid registra-
tion is generally used when little or no amount of non-rigid
deformation of anatomy is expected between frames, and
can be modeled as a combination of rotation and trans-

∗Corresponding author (rjschn{at}seas.harvard.edu)

lation. An example of this scenario would be when regis-
tering 3DUS volumes of the heart taken at the same time
during the cardiac cycle (Rajpoot et al., 2011). Non-rigid
registration is used when a considerable amount of non-
rigid deformation of anatomy is expected between frames.
In these instances, aligning corresponding objects from dif-
ferent images cannot be handled with a rigid registration
model, but rather a spatially varying deformation field
needs to be determined.

Various approaches have been used in non-rigid registra-
tion of ultrasound to resolve the spatially varying deforma-
tion field. Typically scale space or sub-volume approaches
are used for robustness and to improve computational ef-
ficiency (Krucker et al., 2002; Xiao et al., 2002; Pratikakis
et al., 2003; Zikic et al., 2006; Ledesma-Carbayo et al.,
2006). Some methods have used tracking or matching of
features between images, where a dense deformation field
is then found from interpolation or fitting a B-spline ap-
proximation to the feature displacements (Foroughi et al.,
2006; Moradi et al., 2006). It is worth noting that most of
these methods, while designed for non-rigid registration,
could be adapted to find a rigid registration between vol-
umes by enforcing a globally consistent deformation field.

In this manuscript, we address the issue of real-time reg-
istration of 3DUS volumes. As real-time 3DUS volumes
are acquired very quickly (typically at or above 30Hz) and
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Figure 1: Summary of the feature-based 3DUS rigid registration algorithm. The specific processes can be found in the indicated sections.

typically over only a small region of interest, we assume
the amount of non-rigid deformation between images is
small, and therefore assume a rigid transformation model
between volumes. Rigid registration of 3DUS volumes is
typically done using either a tracking-based or imaged-
based approach (or both). Tracking-based methods oper-
ate by tracking the transducer with an external tracking
system, usually optical or electromagnetic, and comput-
ing transformations between images based on the position
and orientation of the tracker (Poon and Rohling, 2006;
Yao et al., 2009; Zhuang et al., 2010). These systems,
along with the added expense of additional hardware, re-
quire careful calibration of the tracker to the ultrasound
image (Mercier et al., 2005). Some of these systems also
make use of image-based registration methods to refine the
registration and account for other movements that cannot
be tracked by the probe (Xiao et al., 2002; Gee et al., 2003;
Poon and Rohling, 2006; Yao et al., 2009; Zhuang et al.,
2010). For systems that do not use image-based refine-
ment, to account for the displacement of anatomy due to
respiration, either patients are put on breath-hold, images
are respiration-gated (Makela et al., 2002), or respiration
is tracked and accounted for using an additional tracker
on the chest or abdomen (Wein et al., 2008). Also, careful
consideration of the tracking environment needs to be con-
sidered, as electromagnetic tracking is sensitive to metal
in the field and optical trackers need to maintain a clear
line of sight between the sensor and markers.

Image-based 3DUS registration methods can be divided
into two types: voxel-based and feature-based. Voxel-
based methods compute a metric over all voxels in a
volume (or overlapping voxels from volumes to be regis-
tered) and in an iterative fashion find the parameters of
the transformation between volumes (Rohling et al., 1998;
Shekhar et al., 2003; Francois et al., 2003; Cen et al., 2004;
Neemuchwala et al., 2005; Grau et al., 2007; Wachinger
et al., 2008; Rajpoot et al., 2009; Kutter et al., 2009; Wein
et al., 2009). These methods have proven to be accurate,
even in the presence of large translational and rotational
displacements between images, but require that voxels be
revisited several times. Fast implementations of this type
(Kutter et al., 2009; Wein et al., 2009) used accelerated
frameworks on a graphics processing unit (GPU) and si-
multaneously registered 3DUS volumes to each other and
to CT images. The former registered larger volumes in
1-3 seconds, depending on volume size, whereas the lat-

ter registered 10 smaller intracardiac 3DUS volumes in 0.6
seconds by assuming a linear trajectory of the transducer
and modifying only the first and last transformations.

The second image-based registration type consists of
feature-based methods that compute a transformation be-
tween images by determining a correspondence between
feature sets (i.e. segmented volume, edges, salient points,
etc.) extracted from 3DUS volumes (Porter, 2004; Soler
et al., 2005; Moradi et al., 2006; Wang et al., 2007; Ni
et al., 2008). These methods can usually only handle small
translational and rotational displacements between 3DUS
volumes. The fastest of these (not GPU accelerated) was
shown in Ni et al. (2008), which used a 3D SIFT imple-
mentation to register volumes in roughly one minute.

A limitation of current rigid 3DUS registration meth-
ods is that, because they typically take several seconds or
minutes to register two volumes, they cannot operate in
real-time. Using these methods, it therefore cannot be de-
termined if sufficient or insufficient data is being acquired
for a given application until well after the images are ac-
quired. For instance, in the application of creating a large
FOV mosaic, the extent of the mosaic cannot be imme-
diately assessed, and so it is not known when sufficient
coverage of the anatomy of interest has been obtained.

To address these issues, we present an image-based
3DUS rigid registration method capable of operating
in real-time when using a GPU accelerated framework,
thereby making the registered 3DUS images immediately
available to clinicians. The method is a feature-based
method, summarized in Figure 1. The presented method
is designed for real-time ultrasound acquisitions where it
is assumed that small probe displacements occur between
images in the sequence. This does not mean that large
translations or rotations cannot occur over the course of
the acquisition, but merely that from frame to frame these
displacements are small. As probe movement in most ac-
quisitions is already limited, such as on the surface of the
liver or within the esophagus to view the heart, these re-
strictions should not limit the registration algorithm’s use-
fulness. The method, however, is not designed to perform
the registration between volumes that exhibit large trans-
lational or rotational displacements, such as used in several
compositing studies (Grau and Noble, 2005; Yao et al.,
2009; Rajpoot et al., 2011). We also do not claim any
novel contributions in the area of ultrasound compositing
or improving image quality, but when using the presented
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registration method for mosaicing multiple 3DUS volumes,
a mean compositing method is used as it is simple, fast,
and produces favorable results as found in visual inspec-
tion.

This manuscript is organized such that the details of the
algorithm are outlined in Section 2. The accuracy, param-
eter selection, and execution times for the algorithm, using
both clinical and water tank images, are then presented in
Section 3.

2. Materials and Methods

2.1. Data Assumptions & Pre-Processing Strategies

This method is designed for real-time ultrasound acqui-
sitions where data is streamed from the ultrasound ma-
chine to an external CPU. Using both the CPU and an
accompanying GPU, transformations and interpolations
are computed. To expedite the processing of the 3DUS
volumes, we exploit several characteristics of ultrasound
sequence data. First, we know the number of interme-
diate volumes (for instance, the Laplacian-of-Gaussian of
a volume) needed to process each volume before it can
be registered. Therefore, to avoid the dynamic alloca-
tion/deallocation of memory, all necessary volumes are
initialized and reused as necessary. Second, there are
several intermediates – for instance, eroded data masks
that are used to eliminate edge effects at the boundary of
the conical-shaped 3DUS image and the surrounding zero-
padded region needed to fill out the rectangular volume
– that are the same for every volume in a sequence. We
therefore precompute and store these intermediates so that
they can be quickly queried at a later time. Lastly, there
are some computations that need to be performed at each
voxel, however, in the zero-padded region surrounding the
conical-shaped 3DUS image, these operations are mean-
ingless. Therefore, the number and locations of the conical
data voxels are stored so that efficient thread launches on
the GPU can be executed to perform these computations.

2.2. Feature Detection

Several methods can be used to find feature points in an
image (Mikolajczyk, 2002), but the most important char-
acteristic of the feature detection is that the feature points
are stable (i.e. features are found at the same salient re-
gion) from image to image. In the 2D SIFT implemen-
tation for photos (Lowe, 2004) and 3D SIFT implementa-
tion for 3DUS (Ni et al., 2008), these features are found
as the local extrema of a Difference-of-Gaussian (DoG)
scale-space. While finding features across multiple scales
is important for photos, as the scale of objects can change
according to the orientation of the camera relative to an
object, this is unnecessary for real-time 3DUS volumes
that exhibit small displacements, as the scale of objects
should not change.

We therefore simplify feature detection by searching for
features at a single scale. As the DoG has been shown to be

adequate for feature detection in 3DUS (Ni et al., 2008),
and as the DoG is just an approximation to the scale-
normalized Laplacian-of-Gaussian (LoG) (Lowe, 2004), we
search for features by finding the local minima of the LoG
of a 3DUS volume at a single user-specified scale, σf . We
use an isotropic LoG kernel, as the resolution of most
3DUS volumes is nearly isotropic and the kernel size is
typically small compared to the volume size. If this were
not the case, however, an anisotropic kernel would be more
appropriate. We search only for local minima of the LoG,
as opposed to both local minima and maxima, because we
want to avoid finding features in the middle of blood pools
or shadows that appear in a 3DUS image, and the minima
are found at higher intensity locations that typically corre-
spond to tissue locations. To further enforce that features
reside at tissue locations, we require that the 3DUS inten-
sity at a feature location is above a user-specified tissue
threshold, τtissue. An important trait of this feature de-
tection method is that, while this does not find all features
at all spatial scales, because features do not change scale
in 3DUS, the same features at a constant scale are being
found from image to image. Assuming an appropriately
chosen value for the scale, σf , a sufficient number of fea-
tures (on the order of several hundred features) should be
found such that an accurate registration between images
can be computed.

The intent of having the user define σf and τtissue is to
allow the user some control over the number of features
that are found in the images and the resulting registration
time. However, we show later how these parameters can be
automatically tuned to make the registration method fully
automatic. It stands to reason that for increasingly smaller
feature scales or tissue thresholds, more features will be
found. Typical values for σf and τtissue used in studies
were 1-2mm and 150-200, respectively, where 3DUS inten-
sities were in the range of 0 to 255.

2.3. Feature Descriptors

A feature descriptor is a means of uniquely character-
izing a feature location and allows for the calculation of
a correspondence between features from different images.
Previous efforts have been made to make these descriptors
both scale and rotationally invariant in both 2D and 3D
imaging for the purpose of matching features under large
rotations and changes in scale (Lowe, 2004; Ni et al., 2008).
However, when registering volumes in a real-time 3DUS se-
quence, the rotations from frame to frame are small. We
therefore construct feature descriptors using a simple ro-
tationally variant method.

We construct feature descriptors by taking a sparse sam-
pling of the 3DUS volume at and around a feature location
(Figure 2). The sampling is taken on a rectilinear 5×5×5
grid of 125 points, where the grid is oriented along the
image axes and centered at each feature location. The
sample spacing, δs, is equal to Mdσf , where the scale fac-
tor Md is a constant and ensures that the extent of the
feature is represented. The samples are then organized as
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Figure 2: The feature detection and feature descriptor formation process. (a) Slice from a clinical 3DUS image of the heart. (b) Corresponding
slice from the Laplacian-of-Gaussian (LoG) computed for the original volume shown in (a) (σf = 2.0mm). The image in the top right corner
of (b) shows the center slice of the LoG kernel (to scale) corresponding to σf . (c) Same slice as (a) with detected feature locations found as
the local minima of the volumetric LoG and with intensity greater than τtissue = 150. (d) 2D depiction of sample points about a feature
to construct the feature descriptor. (e) Example of points sampled in 3D relative to the feature point (starred) to construct the feature
descriptor. The shaded spheres represent the sampled intensities of the 3DUS volume. The grid axis is aligned with the example image axis
shown in (d). Note that while a 3×3×3 grid is shown, the actual grid used to compute feature descriptors is a 5×5×5 grid with a sample offset
of δs.

feature vectors of dimension 125 normalized to unit norm.
We show in several validation studies that these descrip-
tors provide a sufficient level of performance with regard
to registration accuracy, and additionally take little time
to compute.

2.4. 3DUS Volume Registration

Volume registration is performed using the feature sets
from the volumes to be registered. In this study, we refer to
the reference (stationary) volume as Vref and its features
as Fref = (Xref ,Dref ), where Xref and Dref are the
positions and feature descriptor vectors, respectively, of
the reference feature set. The number of features in the
set is nref , and the position and feature vector for feature
i in the set is Xi,ref and Di,ref , respectively. Similarly,
we refer to the volume to be registered as Vnew and its
features as Fnew = (Xnew,Dnew), where there are nnew
features in the set. The source of Fref varies depending
on the registration strategy, as discussed in Section 2.7.

We compute a transformation between volumes by first
finding a rough correspondence between the features in
Fref and those in Fnew using the symmetric matching al-
gorithm described in Section 2.4.1. This rough correspon-
dence will contain true matches (inliers) and false matches
(outliers), and so we subsequently employ the model fit-
ting algorithm (RANSAC) described in Section 2.4.2 to
remove outliers and to better estimate the rigid transfor-
mation between volumes.

2.4.1. Symmetric Matching

Symmetric matches between feature sets Fref and Fnew
are found by first computing the pairwise distances be-
tween descriptor vectors Dref and Dnew, where dis-
tances are computed as the Euclidean norm of the vec-
tor differences. If we index vectors Dref with α, where
α ∈ {1, ..., nref}, and index vectors Dnew with β, where
β ∈ {1, ..., nnew}, then a symmetric match is said to
occur when A = argmin

α
‖Dα,ref −DB,new‖ and B =

argmin
β
‖DA,ref −Dβ,new‖. The Xref and Xnew corre-

sponding to the symmetric matches are stored as Mref

and Mnew, where the coordinate positions of the fea-
tures from symmetric match i are Mi,ref and Mi,new and
i ∈ {1, ..., nsym}.

2.4.2. RANSAC

While symmetric matching generates a rough corre-
spondence between features in two feature sets, outliers
(false matches) prevent computing an accurate registration
strictly from the symmetric matches. For this reason, we
use a RANSAC (RANdom SAmple and Consensus) algo-
rithm (Fischler and Bolles, 1981; Hartley and Zisserman,
2003) to remove outliers so that a more accurate regis-
tration can be computed. In each RANSAC trial, three
unique symmetric matches are used with the least-squares
registration algorithm in Arun et al. (1987) to estimate
the transformation, Tt, that maps Mnew to Mref , where
t ∈ {1, ..., ntrials} and ntrials = 10nsym. The coordinates
Mnew are then transformed according to Tt, and a sup-
port for the trial, St, found as the number of matches
where ‖Mi,ref −TtMi,new‖ ≤ dransac, where dransac is a
distance threshold that determines the cut-off for when a
transformed symmetric match is considered an inlier ver-
sus an outlier. A study to determine an appropriate value
for dransac is described in Section 3.1.2. The symmetric
matches that make up the support from the trial with the
largest St are then used again with the least-squares reg-
istration algorithm in Arun et al. (1987) to estimate the
final transformation, Tfinal, that transforms the new vol-
ume to the coordinate space of the reference volume.

2.5. Interpolation

Once the transformation, Tfinal, relating the position
of Vnew to Vref is determined, we reconstruct Vnew in
the coordinate system of Vref . The interpolated im-
age, Vinterp, is computed using a tri-linear interpolation
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Figure 3: Mosaic of a porcine heart in a water tank created from 437 3DUS volumes. (Left) Example of a single 3DUS volume used in the
mosaic. (Center) Cross-sections of the mosaic created using the RTG method and (Right) RTP method. Notice how the RTP mosaic lacks
definition and is a different shape compared to the RTG mosaic, indicating significant registration error. (LA – left atrium; LV – left ventricle)

method. Using an eroded mask of the conical data vol-
ume, we avoid interpolating the data near the intersection
(within a two voxel radius) of the conical 3DUS image and
the surrounding padding of zeros, thereby avoiding the
blurring effect that would otherwise be seen in the inter-
polated image. The interpolated volume, Vinterp, is made
to be the same volume size as the original volume, Vnew,
but as the conical 3DUS image does not occupy the en-
tire rectangular volume, we use a windowing operation to
limit the region within Vinterp for which the interpolation
is computed to the subvolume at which the transformed
conical image resides.

2.6. Mosaicing

One application of the presented registration method
is constructing large FOV mosaics from several smaller
FOV 3DUS volumes. For this application, we composite
the images using a simple averaging method, as this is
simple, produces favorable results as seen through visual
inspection, and can be computed quickly on a GPU.

To composite using the averaging method, we maintain
two volumes, Σdata and Σcount, where Σdata is the sum-
mation of interpolated intensities from each Vinterp vol-
ume added to the mosaic, and Σcount the summation of
the number of voxels that have contributed to the data
in Σdata. Voxels with a value of zero (in the zero-padded
region) do not factor into the compounding, and therefore
do not affect the mosaic. The compounded mosaic im-
age is then found as Vmosaic = Σdata/Σcount. A similar
windowing operation as was used for the interpolation pro-
cedure is used for updating the mosaic, making the process
of updating the mosaic quick and efficient.

2.7. Registration Strategies

When registering volumes in a 3DUS sequence, there
are two registration strategies that could be employed.
One would be to register the next volume to the most re-
cently registered volume, a method which will be referred
to as the Register-to-Previous (RTP) method. While this
method would be suitable for short 3DUS sequences, it
would accumulate substantial error in long sequences with

many volumes (Figure 3). An alternate strategy in reg-
istering new volumes is instead use a combination of the
features from all volumes in the sequence previous to the
current volume, a method which will be referred to as the
Register-to-Global (RTG) method. The work presented in
Wachinger et al. (2008) shows the benefits of this group-
wise versus pair-wise registration strategy for 3DUS.

A naive approach for the RTG method might be to sim-
ply retain the features from every volume and store their
positions and descriptors in a large database for use in
registering subsequent volumes. However, this approach
is inefficient and can lead to the storage of repeated and
useless information. Rather, we record only the “good”
features (i.e. features that are likely to be found in mul-
tiple volumes) and maintain a manageable database size
by limiting repeated features, therefore allowing for real-
time execution of the registration algorithm. To accom-
plish this, we start by only recording those features that
make up the support from a previous 3DUS volume reg-
istration. As these corresponding features were found in
at least two previous volumes, it is more likely they will
be found in subsequent volumes. Also, because features
are required to be local minima of the LoG, it makes sense
to allow only one feature to occupy a small neighborhood.
We keep track of the feature positions for features added
to the database by maintaining a volume, VDB , that is the
same size as Vinterp (or Vmosaic when mosaicing) and that
indicates the positions of the previously recorded features.
A new feature is added to the database only if a feature
has not already been recorded at its location. When a new,
unique feature is found, its index location in the database
is then written to the neighborhood of diameter σf cen-
tered at the feature position in VDB . Additionally, the
feature position and descriptor vector are recorded to the
database.

When registering new volumes, it is unnecessary to use
the entire database of features to compare to the features
of the new volume, as there will be a large number of fea-
tures whose position will be nowhere near the volume to
register. Rather, the feature set that we use as the refer-
ence feature set, Fref , when registering a new volume is a
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combination of a small subset of the feature database and
the features from the previously registered volume. The
features that are used from the database are those that
resided at the location of the conical data volume in the
transformed previous volume, Vinterp. This is based on
the assumption that there are small displacements between
consecutive frames. These features can be quickly found
by looking at the intersection of Vinterp and VDB . Ad-
ditionally, all features from the previous volume are used
because neighboring volumes will have a large number of
corresponding features, and these features do not neces-
sarily already exist in the database.

2.8. Automatically Tuning Parameters

In the registration algorithm, there are four parameters
that need to be defined that control how the algorithm op-
erates and performs. These parameters are the feature de-
scriptor sample offset scale factor (Md), RANSAC distance
threshold (dransac), feature scale (σf ), and tissue thresh-
old (τtissue). The sample offset scale factor determines,
relative to the feature scale, the extent of the sampling
grid used in the feature descriptor formation process. The
feature scale is assumed to be tuned for each application
depending on the image and anatomy of interest, and so it
follows that this scale factor should be a constant. An op-
timal range and value for the scale factor is determined in
the study shown in Section 3.1.1. Similarly, the RANSAC
distance threshold should also not need to be tuned for
each application, as it should be made as small as possible
so that accurate registrations result, but not so small as to
be on the order of the original 3DUS resolution. We show
this to be the case in the study described in Section 3.1.2.

The feature scale and tissue threshold, however, are de-
pendent on the imaging and anatomy being imaged, as the
scale of the dominant features and the 3DUS intensity at
prospective feature locations will change for different tis-
sue and anatomic structures. These values therefore need
to be tuned for each application. The effect of varying
these values is studied and described in Section 3.1.3 and
Section 3.1.4.

To facilitate the tuning of the feature scale and tissue
threshold (i.e. to keep the user from having to tune these
parameters for every application or 3DUS sequence) and
make the registration algorithm fully automatic, we de-
signed an auto-tune method for these parameters. The
method starts by assuming values for these parameters,
and in iteratively registering two example 3DUS volumes,
the parameters are modified such that either a desired
number of matching features are found or a desired regis-
tration time results.

As later shown and described in Section 3.1.3 and Sec-
tion 3.1.4, suitable starting values for the feature scale and
tissue threshold are 1.0mm and 170, respectively. Also
shown is that, in general, registration time and support
(i.e. final number of matching features) are inversely pro-
portional to these parameters. Therefore, at each itera-
tion, a greedy algorithm can be employed and depending

A

B

C

D

Figure 4: Water tank setup that allows for the acquisition of an ul-
trasound image with a known ultrasound probe position/orientation
relative to the object being imaged. Shown are a porcine heart (A)
attached to a rotation stage (B), and an ultrasound probe (C) at-
tached to a translation stage (D).

on whether the registration time or support is too large
or small, σf and τtissue are increased or decreased, respec-
tively, in step sizes of 0.1mm for σf and 10 for τtissue. The
parameter modification that results in the largest change
to the registration time or support is adopted (i.e. only
one parameter value is changed in each iteration), and the
process iterated until the time or support falls within a
desired range. This auto-tune method typically takes less
than a few seconds to perform.

3. Validation and Performance

We performed several studies to characterize the be-
havior of the algorithm. These studies either explored
the parameter space of the algorithm to determine suit-
able ranges for parameter values or explored the algo-
rithm performance for different applications. Data was
acquired for these studies using a 3DUS machine (iE33
Echocardiography System with transesophageal X7-2t and
transthoracic X7-2 probes, Philips Healthcare, Andover,
MA, USA) with the capability to stream 3DUS images to
an external PC (Dell Alienware Aurora, Intel Core i7 pro-
cessor @ 2.67GHz, 6GB RAM, NVIDIA GTX260 graphics
card). Several studies were done using images that were
acquired at known positions (i.e. known translation and
rotation offsets). This used the water tank setup shown in
Figure 4, which features a translation stage (to which we
attached the X7-2 ultrasound transducer) and a rotation
stage (to which we attached a porcine heart for imaging).
We also explore the accuracy of the registration algorithm
when used for stabilizing clinical ultrasound sequences of
valves in a beating heart.

3.1. Parameter Selection

As previously described, there are four parameters (σf ,
τtissue, Md, dransac) that control algorithm operation and
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Figure 5: Effect of the feature descriptor sample offset scale factor
(Md) on registration performance.

performance. The studies contained in this section show
how varying these parameters affects algorithm perfor-
mance. As explained earlier, Md and dransac should not
need to be tuned, and so optimal ranges and values for
these parameters are determined. The effect of varying
σf and τtissue on registration time and accuracy are also
described, and suitable ranges for these parameters are
explored.

The studies described in this section were performed
using images acquired in a water tank (Figure 4) using
combinations of known translations (0, 3, 6, and 9 mm)
and rotations (0, 4, and 8 degrees). The objective of the
registration algorithm is to register images at a frame rate
of roughly 30Hz, and so this range translates to probe
motions upwards to 0.27 meters per second and 242 de-
grees per second, which is expected to be an upper bound
on expected probe motion. The ultrasound volume size
was 144 × 80 × 112 voxels along the lateral, elevational,
and axial directions, respectively, with a resolution of
0.75×0.65×0.83 mm/voxel. For the following studies, the
images were registered to an image at 0 mm of translation
and 0 degrees of rotation using the described parameters,
and registration errors computed according to the offset of
each image. The measurement of “support” shown in the
accompanying plots comes from the RANSAC algorithm
and is a measure of the number of final matches used to
compute the transformation between images.

3.1.1. Sample Offset Scale Factor, Md

The size of a feature is related to the designated feature
scale at which the LoG is computed. When computing
the LoG, for a detection error of less than 0.1%, the width
of the LoG kernel is suggested to be roughly 8.5 times
the feature scale (Gunn, 1999). Therefore, the extent of
the grid used to compute the feature descriptor should be
at least as large, meaning the corresponding sample offset
scale factor would have a value of at least 2.125. If Md was
made to be too large, sample points would be so spread
out that the descriptor would include distant image data
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Figure 6: Effect of the RANSAC distance threshold (dransac) on the
registration performance.

unrelated to the feature.
We therefore explored how varying Md would affect reg-

istration performance to determine an optimal range for
the value of Md. We did this by registering the im-
ages of known position using varying Md from 1 to 8.
The registrations were computed using dransac = 1.5mm,
τtissue = 150, and three different feature scales (σf = 1,
1.5, and 2mm). The three spatial scales were determined
qualitatively to be a reasonable range for the feature scale
for the given images. As the RANSAC algorithm is a ran-
dom process, the registration results can vary slightly from
one execution to the next, and so we performed the reg-
istrations 10 times for each feature scale, resulting in 30
trials for each scale factor. The results of this analysis are
averaged over all feature scales and trials, a plot of which
can be seen in Figure 5.

The plot indicates that when Md is between 3 and 4, the
support is at its maximum. Meanwhile, the registration
error (both translation and rotation) is roughly constant
for Md between 2 and 6. Therefore, in the interests of
generating the maximum support and limiting error, we
use Md = 3.5 for the remaining studies.

3.1.2. RANSAC Distance Threshold, dransac
The RANSAC distance threshold should be made as

small as possible to limit registration error, but the lower
bound on the threshold value is near the spatial resolution
of the 3DUS volume. To show this, we analyzed the effect
of the RANSAC distance threshold, dransac, on the algo-
rithm performance in much the same way as was done for
Md, with the difference being that for this study we fixed
Md at 3.5 while dransac varied between 0.5 and 5mm. The
results were averaged over all feature scales and trials (Fig-
ure 6). As anticipated, for dransac below the spatial reso-
lution of the volume (about 0.75mm/voxel) and for large
values, the registration performance diminished. Appro-
priate values for dransac would then be those between 1
and 2mm, as registration error is comparatively small and
constant in this region. Accordingly, we use a dransac value
of 1.5mm for the remaining studies.
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Figure 7: Effect of feature scale (σf ) on (a) the registration support
and execution time and (b) the registration accuracy.

3.1.3. Feature Scale, σf

As previously mentioned, an appropriate feature scale
at which to detect features will depend on the imaged tis-
sue and anatomy. To elucidate the effect of varying fea-
ture scale on registration performance, we computed the
registrations for the same images as used in the previous
two studies, using the optimal values of Md = 3.5 and
dransac = 1.5mm and making τtissue = 150. The value of
the feature scale was varied between 0.25mm and 3.5mm,
and similar to the previous studies, several trials (25 trials)
were performed for each feature scale. The performance
values were then averaged over all trials. The effect of the
feature scale on the number of matches found and the reg-
istration time can be seen in Figure 7(a), while Figure 7(b)
shows the effect of the scale on the registration accuracy.

With regards to the accuracy, it can be seen in Fig-
ure 7(b) that in an effort to keep the translation error as
low as possible, a value of σf between 0.5mm and 2mm
should be used. In this range, the rotation error is small-
est for smaller σf , and so it might be assumed that a σf
of 0.5mm should be used. However, as seen in Figure 7(a),
the registration time for small feature scales becomes large
due to the increased number of features being detected.
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Figure 8: Effect of the tissue threshold (τtissue) on (a) the registra-
tion support and execution time and (b) the registration accuracy.

It would therefore be prudent to choose a small enough
feature scale to maintain registration accuracy, but large
enough that the registration time will allow for real-time
operation. For example, if the frame rate is 30Hz, the reg-
istration time should be ≤ 30ms, therefore an appropriate
feature scale would be 1-1.5mm. It is important to note
that the registration time is dependent on the GPU hard-
ware and architecture. While this study was performed
using an NVIDIA GTX260 graphics card, more recent
hardware releases would prove to substantially reduce the
reported registration times. A more detailed analysis of
registration time versus GPU hardware can be found in
Section 3.6.

3.1.4. Tissue Threshold, τtissue
The tissue threshold is primarily used to limit how many

features are found in an image, and so it is important
to understand its effect on the registration performance.
We examine the effects of the tissue threshold on the reg-
istration performance using the same water tank images
from the previous three studies. For this study, Md = 3.5,
dransac = 1.5mm, and σf = 1.0mm, while we made τtissue
to vary between 20 and 240 (assuming intensities are in the
range of 0-255). For each value of τtissue, 25 trials were
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Figure 9: Registration accuracy and normalized support for an arti-
ficially rotated clinical 3DUS image.

performed. The results of the registration performance,
shown in Figure 8, were then found by averaging across
these trials.

For larger values of τtissue, fewer features are being
found in each image and therefore a lower support re-
sults. While this has the effect of lowering the registra-
tion time, this has little effect on the registration accuracy
when τtissue is below roughly 200. As a result, τtissue is a
suitable parameter to tune to adjust the registration time
to below acceptable limits without affecting accuracy. For
instance, it can be seen in Figure 8 that changing τtissue
from 120 to 170 has almost no effect on the registration
accuracy, yet the registration time is cut in half.

3.2. Registration Accuracy Under Artificial Rotation

Given that we have chosen to construct rotationally vari-
ant feature descriptors, it is helpful to know the extent to
which these features can accurately register two images
that are rotated relative to each other. In an ideal sce-
nario, where the imaging is independent of the ultrasound
probe orientation to the anatomy, the feature descriptors
are affected by rotation but not translation. To analyze
the effect of image rotation on the registration accuracy,
we perform a study similar to that done in Ni et al. (2008),
where the stability of feature matching under rotation was
analyzed for a registration method that used the rotation-
ally invariant 3D SIFT feature descriptor.

For this study, we generated a set of artificially rotated
images by applying a known rotational transformation to
a baseline image. We then registered the transformed im-
age to the baseline image (Md = 3.5, dransac = 1.5mm,
σf = 1.5mm, and τtissue = 150) and computed the regis-
tration error. This was done for rotation angles between
0 and 40 degrees. The resulting support (normalized by
the support from the 0 degree image registration) and the
registration accuracy for a clinical image generated using
the X7-2 transducer can be seen in Figure 9. The results
suggest that rotations up to roughly 20o can be resolved
using the presented registration method.

Table 1: Registration strategy comparison – position and orientation
error between the first and last images registered in an ultrasound
sequence acquired using a loop trajectory of the transducer

Error
Registration Translation Rotation

Trajectory Strategy (mm) (degrees)

1
RTG 0.36 0.39
RTP 0.56 1.06

2
RTG 0.28 0.36
RTP 1.73 2.81

3
RTG 0.27 0.31
RTP 4.70 4.15

Avg.± RTG 0.30± 0.05 0.35± 0.04
Std. Dev. RTP 2.33± 2.13 2.67± 1.55

3.3. Drift Analysis for Different Registration Strategies

As we are proposing to use the presented registration
algorithm to generate arbitrarily large 3DUS volumes, it
is important that the algorithm accumulate minimal error
as more and more volumes are added to the mosaic, espe-
cially if the same region is imaged several times throughout
an acquisition. To analyze the accumulation of error for
the RTP and RTG registration strategies discussed in Sec-
tion 2.7, we conducted a study which analyzed the accu-
mulation of registration error by computing the difference
between the first and last frame in a loop trajectory of
the ultrasound probe. For this study, we again used the
water tank setup shown in Figure 4, allowing us to accu-
rately acquire the first and last frames of the loop in the
same position. The parameter values used were Md = 3.5,
dransac = 1.5mm, σf = 1.5mm, and τtissue = 150. The
trajectories were created using a series of translations and
rotations along and about the y-axis of the image, where
translations and rotations are traversed in 3mm and 4o

increments, respectively. If we designate a translation as
T and rotation as R, then the studied trajectories were as
follows:

1. T(48mm), T(-48mm)

2. T(48mm), R(20o), T(-48mm), R(−20o)

3. T(48mm), R(60o), T(-48mm), R(−60o)

The accumulated error for the three trajectories can be
seen in Table 1. While the RTG method exhibited roughly
constant error for the three different trajectories, the RTP
method exhibited a larger error than the RTG method
for every trajectory, and also accumulated an increasing
amount of error as the number of frames and total rotation
throughout the trajectory increased. This suggests that
the RTG method is better suited for registering several vol-
umes to create a 3DUS mosaic. Qualitative verification of
this conclusion can be seen by comparing the mosaics gen-
erated using the RTP and RTG methods shown in Figure 3
(Md = 3.5, dransac = 1.5mm, σf = 1.5mm, τtissue = 150),
which were created from a left ventricular axis sweep (437
3DUS volumes of size 160× 64× 208 voxels and resolution
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Figure 10: Registration position (a-c) and orientation (d-f) accuracy for the stabilized ECG-gated 3DUS sequences. Gating was done at
varying rates over the cardiac cycle. Images were of mitral and aortic valves acquired in 34 clinical studies using either a transesophageal or
transthoracic approach. Respiration was not stopped nor was respiration-gating used for the acquisitions.

0.56× 0.70× 0.58mm/voxel) of a porcine heart in a water
tank. The mosaic created using the RTG method shows
clear boundaries and texture within the tissue, while the
mosaic created using the RTP method has much less def-
inition and a different overall shape. This again supports
the conclusion that the RTG method is better suited for
creating 3DUS mosaics from many images.

3.4. Registration Accuracy in Stabilizing 3DUS Volumes
of Heart Valves Over a Cardiac Cycle

To study fast moving heart valves using 3DUS, it is ben-
eficial to view the valves at a higher frame rate than what
can be originally acquired on a 3DUS machine. This can
be done using ECG-gating and acquiring images at spe-
cific times during the cardiac cycle over several heartbeats.
However, depending on the desired frame rate, the acqui-
sition process can take a long time, upwards to several
minutes. During this time, it is likely that the ultrasound
probe will shift, and it is typically not possible to cease
respiration during this time. Therefore, in the gated se-
quence there will be small shifts of the valve relative to
the probe which appear in the images. These shifts can be
accounted for using a rigid transformation model.

As the shifts are generally small relative to the size of the
volume, which is typically made large enough to view the
entire valve, we studied the effectiveness of the presented
rigid registration algorithm to stabilize the images across
the gated sequence. As the gated 3DUS sequence is of a
beating heart, there is inevitably some amount of non-rigid

deformation of the tissue between frames. We therefore ac-
quired gated sequences at multiple sample rates across the
cardiac cycle to determine at what rates the rigid registra-
tion algorithm could accurately register the gated sequence
in the presence of this non-rigid tissue deformation.

For this study, we acquired gated 3DUS sequences across
a cardiac cycle in 34 clinical cases. Images were taken of
either the mitral or aortic valve, and were acquired using
either a transesophageal or transthoracic approach. Gated
sequences were acquired at 5Hz, 10Hz, 25Hz, 50Hz, and
100Hz across the cardiac cycle. We did not cease respira-
tion nor did we perform respiration gating for the acquisi-
tions. In the context of this study, “gated sequence” refers
to the resulting collection of frames acquired over several
cardiac cycles and represented relative to the single car-
diac cycle. Any frame in this sequence is referred to as a
“gated frame” and the frequency of the gated frames in
the gated sequence is referred to as the “gated frequency.”
For each patient, we constructed several gated sequences
of varying gated frequencies.

To quantify registration error, we first registered the
gated frames in a gated sequence in a successive fashion
using the RTG method. We did this in several trials for
each gated sequence such that the start frame was varied
among all gated frames in a gated sequence. For instance,
if there were three gated frames in the gated sequence,
{F1,F2,F3}, we would run three different trials, where the
registration order would be either {F1,F2,F3}, {F2,F3,F1},
or {F3,F1,F2}. In the first trial, for instance, F2 would be
registered to F1, and then F3 registered to the already
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Figure 11: Position and orientation RMS registration error for corresponding frame rates across the 34 clinical studies. Acquisitions were
ECG-gated over a cardiac cycle. Images were of mitral and aortic valves using either a transesophageal or transthoracic approach. Respiration
was not stopped nor was respiration-gating used for the acquisitions.

Figure 12: Short axis images of the aortic valve in a gated 3DUS sequence across the cardiac cycle acquired using a transesophageal approach.
(Top) Originally acquired gated 3DUS sequence. (Bottom) Stabilized 3DUS sequence. Notice the position of the valve in the original
sequence varies within the image, whereas the position of the valve in the stabilized images is relatively constant throughout the sequence.
The displacements in the original images were due to respiration and movement of the probe during the gated acquisition.

registered F2. We then registered the first frame in the
trial to the already registered last frame. For instance,
in the first example trial, we would register F1 to the al-
ready registered F3. The registration error was then the
position and orientation offset of the registered first frame
from the original first frame in the trial, where the posi-
tion offset is measured at the center of the conical 3DUS
volume. Ideally, if there was no registration error, if we
were to register the first frame in the gated sequence to
the last frame after all frames were stabilized, the first
frame and the registered first frame would be in the same
location and orientation as the heart follows a cyclic mo-
tion. The position and orientation displacements were av-
eraged across all trials performed on the gated sequence
and represent the average registration error that accumu-
lated across the entire gated sequence. The feature scale
and tissue threshold were tuned only once for each gated
sequence using the auto-tuning method and two consec-
utive gated frames, and the determined parameter values
then used for all trials. For the auto-tuning method, pa-
rameters were modified until the support was in the range
of 100-150. This resulted in average registration times of
roughly 100ms. The longer registration time was a result of
the volume being quite large so that the entire valve could
be imaged. The average time to acquire each volume was

roughly 125ms, and the average cardiac cycle time was
roughly 670ms (i.e. heart rate of roughly 90 beats per
minute).

The average registration errors in position and orienta-
tion across all trials for the different gated frames rates
in the 34 clinical cases are shown in Figure 10. It can be
seen that larger registration errors were typically found for
lower gated frame rates. In these cases, the time between
gated frames was larger and therefore a larger amount of
non-rigid tissue deformation occurred. The RMS registra-
tion errors in position and orientation across the 34 clinical
cases are summarized in Figure 11. If we assume suitable
registrations to be those whose error was less than the
limits of visual inspection, which were shown in Bankman
(2000) to be 2mm in position and 2o in orientation in the
registration of MR and CT brain images (Shekhar et al.,
2004), then the lowest allowable gated frame rate at which
the presented registration algorithm can accurately sta-
bilize the gated sequence is roughly 25Hz (i.e. maximum
allowable time between gated frames is roughly 40ms). Im-
ages from a gated sequence of the aortic valve before and
after stabilization can be seen in Figure 3.4.

3.5. Registration Accuracy in a Water Tank Mosaic
To assess the accuracy of the registration algorithm for

the purpose of generating a 3DUS mosaic, we manually se-
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Figure 14: Cross-sections from a single 3DUS volume (left) and corresponding mosaic (right) of a porcine liver in a water tank. The dotted
lines in the image on the right correspond to the size and location of the volume on the left within the mosaic.

Table 2: Summary of the mosaic accuracy study which measured inter-fiducial distances AD and BC. Variability is reported as avg.±std.dev.
AD BC Both

n 15 15 30
Volumes in Mosaic 68.9± 7.9 65.2± 9.2 –
Actual Length (mm) 121 118 –

Length in Mosaic (mm) 120.5± 0.1 116.7± 0.9 –
Error (mm) 0.9± 0.8 1.4± 0.7 1.1± 0.8
Error (%) 0.72± 0.64 1.20± 0.59 0.96± 0.65

A

B

C

D

Figure 13: Water tank setup showing a porcine liver with surround-
ing fiducials - suture intersections A, B, C, and D (occluded).

lected fiducials in a mosaic and compared the image-based
inter-fiducial distances versus the actual inter-fiducial dis-
tances. The object being imaged was a porcine liver in a
water tank (Figure 13), and the fiducials (A, B, C, and D
in Figure 13) were the intersections of sutures placed in a
grid pattern directly above the liver. We acquired sweep-
ing ultrasound data (using the X7-2 ultrasound trans-
ducer) by starting at fiducial A or B and ending at D
or C, respectively. Typically 50-80 volumes were acquired
in each sweeping acquisition, where each volume had di-
mensions of 144 × 112 × 112 voxels and a resolution of
0.55× 0.54× 0.63mm/voxel. For each fiducial pair (AD or
BC), 15 mosaics were created using the RTG strategy and
the fiducials in those mosaics manually selected. A cross-
section from one of the mosaics is shown in Figure 14.
The parameters used for the registration were Md = 3.5,

dransac = 1.5mm, σf = 1.5mm, and τtissue = 150. A sum-
mary of the results from this study are shown in Table 2,
where it is shown that an average error of less than 1%
was found.

3.6. Registration Running Times

The presented feature-based registration algorithm can
operate in real-time, but it is helpful to know how the reg-
istration time is distributed over the different components
of the algorithm. For this, we have included a detailed
time analysis (Figure 15) of the registrations performed
to compute the mosaics shown in Figures 3 and 14. For
these mosaics, the same Md and dransac values were used
as found in the studies described in Sections 3.1.1 and
3.1.2, while τtissue and σf were tuned for the different
types of images. The time analysis does not include the
time to render the mosaic as this can be done in a separate
thread.

To determine the effect of the graphics card on the reg-
istration time, we also performed the same analysis as
was done above but instead of using an NVIDIA GTX
260 (which has 192 cores), we used an NVIDIA GeForce
8600M GT (which has 32 cores). We found nearly iden-
tical results with regard to the percentage of time that
each component took, however, the average total regis-
tration time was roughly six times longer (about 170ms).
This indicates a linear relationship between the number of
cores and the registration time. This also suggests that
if for instance the same registrations were performed on
the latest NVIDIA hardware (i.e. NVIDIA GTX 580 with
512 cores), a 2.6× speed increase could be achieved (i.e.
registration time decrease from 30ms to 12ms).

It is worth noting that with the CUDA and device ar-
chitecture used in all of the presented studies (NVIDIA
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Figure 15: Average running times for the components of the registra-
tion algorithm relative to the average total registration time. Results
are for the RTG mosaic shown in Figure 3 (dark gray) and the mo-
saic shown in Figure 14 (light gray), where the average registration
times were 28.7ms and 24.4ms, respectively.

GTX 260 Graphics Processing Unit, Driver/Runtime Ver-
sion 3.0, Compute Capability 1.1, NVIDIA Corporation,
Santa Clara, CA, USA), the time to load a 3DUS volume
(∼ 1283) onto the GPU as a texture took about 20 times
longer than loading the volume onto the GPU as a linear
memory block. Therefore, linear memory blocks in global
memory were used for all data loaded onto the GPU in
this study.

4. Discussion

4.1. Registration Algorithm Performance

In this paper we have presented a feature-based 3DUS
rigid registration algorithm capable of registering volumes
in a 3DUS sequence in real-time. The registration algo-
rithm is most closely related to the method in Ni et al.
(2008), which is a SIFT-based method that ensures that
features are detected at multiple spatial scales and also
that feature descriptors are scale and rotationally invari-
ant. This is a consequence of the original design of SIFT,
which was designed for detecting and matching features in
2D photos (Lowe, 2004). However, while features in 2D
photos may appear at different scales simply by changing
the position and orientation of the camera relative to the
imaged objects, the scale of features in 3DUS should not
change, especially in the case of real-time 3DUS where
it is assumed that the probe undergoes small displace-
ments between frames. Also, in assuming the probe under-
goes small displacements, the need for a feature descriptor
that can handle large rotational and translational displace-
ments becomes unnecessary. It has also been shown that
ultrasound is not a rotationally invariant imaging modality
(Grau et al., 2007; Schneider et al., 2010), as the appear-
ance of anatomy is dependent on the direction of acoustic

propagation relative to the imaged structures, making ro-
tationally invariant feature descriptors unnecessary.

We therefore only search for features at a single spatial
scale. We also devised a simple rotationally variant feature
descriptor formation method. The simplified feature de-
tection and descriptor formation methods, as well as using
a GPU accelerated framework, results in at least a 1000×
speed increase (from 1 minute down to under 100ms for
single volume registration) compared to the method in Ni
et al. (2008). While a substantial speed increased was real-
ized, we showed in several validation studies that this was
not at the expense of registration accuracy. Comparable
performance was in fact found in those studies (Sec. 3.2
and Sec. 3.5) where a similar study was performed for the
3D SIFT method.

Comparable registration accuracy and fast execution
was made possible through the use of the RTG registration
strategy. In maintaining a minimal but representative set
of global features and storing and indexing these features
efficiently, we were able to limit the accumulation of regis-
tration error, even when mosaicing several hundred 3DUS
volumes. The most promising results for the RTG method
were those described in Sec. 3.3, where for loop trajecto-
ries in a water tank, the RTG method accumulated less
than 0.5mm and 0.5o of translation and rotation error,
respectively.

To determine the clinical usefulness of the presented
rigid registration algorithm, and to also determine the abil-
ity of the algorithm to handle varying degrees of non-rigid
tissue deformation, we studied the accuracy of the reg-
istration method in stabilizing an ECG-gated 3DUS se-
quence acquired over the cardiac cycle at varying gated
frame rates. The 3DUS images in the clinical studies were
of the mitral or aortic valve in a beating heart, acquired
using either a transesophageal or transthoracic approach
without the use of respiration gating or ceasing respiration.
Due to small probe movements and respiration during the
long acquisition times, the location of the valves would
shift relative to the ultrasound probe causing the gated
images to appear to shift (Figure 3.4). The rigid registra-
tion algorithm was therefore employed to cancel out this
undesired movement as seen in the images. We found that
the registrations were accurate (within the limits of visual
inspection (Bankman, 2000)) for gated frame rates of 25Hz
or less (i.e. time between frames is less than 40ms). This
suggests that the rigid registration algorithm is accurate
even in the presence of small degrees of non-rigid deforma-
tion in 3DUS volumes. A similar study of rigidly aligning
misaligned or shifted 3DUS images of the beating heart
was shown in Shekhar et al. (2004) for stress echocardiog-
raphy studies, which suggests that the presented method
might also be suitable for this application.

As there was no gold standard to use for directly mea-
suring accuracy in the clinical validation study, the reg-
istration error was found as the drift across the sequence
by finding the position and orientation difference between
the frame at the start of the sequence and the same frame
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registered to the end of the stabilized sequence. Since the
heart follows a cyclic motion, these frames should ideally
be in the same location were there no registration error.
A limitation of this measurement is that it relies on the
assumption of perfect cyclic motion of the heart, or that
the heart is always in the same configuration at corre-
sponding times relative to the R-peak in the ECG signal
(i.e. the event by which frames were gated). This assump-
tion breaks down in the presence of increasing beat-to-beat
variation or arrhythmias, however, we did not observe any
significant heart rate variations in the examined cases.

In the clinical validation study, we showed that regis-
tration accuracy declined for low frame rates, which was
due to larger amounts of non-rigid deformation between
frames that could not be resolved by the rigid transfor-
mation model. For this reason, we can assume that the
proposed registration method would not be suitable for
motorized 3D probes when imaging fast moving cardiac
structures, as these probes generally have lower frame rates
and a large amount of non-rigid tissue deformation would
be expected. However, the proposed method should prove
sufficient when imaging relatively static structures, such
as the liver, using a motorized 3D probe and assuming
small displacements between frames. The same could also
be assumed for freehand 3DUS volumes.

While the registration method is accurate even in the
presence of small degrees of non-rigid deformation, this
type of deformation will be most noticeable in the appli-
cation of stitching together (mosaicing) several 3DUS vol-
umes. For larger degrees of non-rigid deformation, stitch-
ing artifacts would be expected. However, the presented
registration algorithm is not designed for these situations,
but rather a non-rigid registration method should be em-
ployed. In the case of mosaicing, the presented method
is best suited for images of static tissue, or for images of
moving tissue taken at the same time during its motion
(for instance, images of the heart taken at the same time
during the cardiac cycle). Also, while we used an aver-
aging method for compositing mosaics, this was done be-
cause this method is simple, operates quickly on the GPU,
and produces favorable results as seen in visual inspec-
tion. However, this is not a novel contribution in the area
of improving image quality. There are more sophisticated
compositing methods which better integrate the informa-
tion from multiple 3DUS images (Grau and Noble, 2005;
Yao et al., 2009; Rajpoot et al., 2011).

The presented registration algorithm operates under a
small-displacement assumption to compute accurate trans-
formations in real-time. While it is tempting to define
“small” as a percentage of volume size, in the case of the
presented feature-based registration method, it is rather a
function of image content. The method requires a coinci-
dence of features from frame to frame, and so more impor-
tant than volume overlap is overlap of salient regions. It is
important to take this into consideration when registering
anatomy with “dead zones” that have little or no saliency,
as these regions will not contribute to the registration.

These regions have the potential to cause larger than ex-
pected registration errors if 3DUS volumes are roughly the
same size (i.e. if the “dead zone” occupies a large percent-
age of the 3DUS image). For instance, this likely will not
be an issue when imaging the liver, as it is a dense organ
with unique and varying internal structure and texture.
However, regions such as the pools of amniotic fluid as
seen in fetal ultrasound, or the blood pool of the left ven-
tricle as seen in echocardiography, have the potential to be
more problematic.

While the algorithm requires that the feature scale and
tissue threshold parameters be tuned for a given applica-
tion, we have shown that these parameters can be tuned
automatically using a very simple greedy algorithm that
attempts to force the resulting registration support or time
to fall within a desired range. In particular, this auto-
tuning method was used extensively in the clinical val-
idation study to stabilize the gated 3DUS volumes. The
auto-tuning method exploits information that we gathered
from the sensitivity studies, specifically, that the registra-
tion support and time are inversely proportional to the
feature scale and tissue threshold. While not shown, it
can be reasoned that an online auto-tuner (i.e. one that
adjusts the parameter values during the registration pro-
cess) could also prove useful if, for instance, it was impor-
tant to regulate registration time. While the feature scale
could not be changed (as the detected features need to be
at a single scale) the tissue threshold could be adjusted
accordingly from one registration to the next to keep the
registration time within acceptable limits.

The registration algorithm makes it possible to regis-
ter 3DUS volumes online without the need for external
tracking systems (such as electromagnetic or optical track-
ing systems), which means that when acquiring data to
use with the presented method, any existing 3DUS sys-
tem should suffice. A limitation of the presented method,
however, compared to systems that use a tracking system,
is that because a continuous stream of 3DUS volumes is
required, any interruption in that stream, such as lifting
the probe from the object being imaged, will likely cause
subsequent volume registrations to fail under the RTG and
RTP registration strategies. For this reason, tracking sys-
tems can still be a valuable registration tool, especially
if used in combination with an image-based registration
method.

4.2. Future Work

The presented work has obvious applications other than
those shown, such as in hepatic tumor location and inter-
vention, echocardiography and intracardiac echocardiogra-
phy, and fetal ultrasound. However, to be more robust and
useful for these applications, there are several aspects of
the algorithm that could be improved. The development
of a real-time non-rigid registration algorithm would be
especially helpful for applications where soft tissue, such
as the breast, is imaged, as soft-tissue deforms in a largely
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non-rigid fashion, especially due to ultrasound probe con-
tact. Other areas of possible improvement are to integrate
a real-time temporal registration algorithm based on the
ECG signal so that, for instance, a large FOV 4D image
of the heart could be constructed in real-time. Lastly, in
order to composite images that were acquired in acquisi-
tions where the probe underwent large displacements, it
would be best to use instead of averaging a more elegant
compositing method (for example, Rajpoot et al. (2011))
that takes into account the appearance of anatomy under
largely varying probe orientations. The challenges with
the proposed future work are not the methods themselves,
but integrating the methods into the current system and
maintaining a real-time architecture.

5. Conclusion

The presented 3DUS rigid registration algorithm takes
into account the nature of real-time 3DUS volumes to sim-
plify the process of feature detection and extraction, and
in doing so, along with using a GPU accelerated frame-
work, is able to operate in real-time (i.e. register volumes
as fast as they are acquired). The method also uses tech-
niques to maintain and integrate a set of global features
into the registration process, which helps to limit the accu-
mulation of registration error. Several studies revealed ap-
propriate ranges and values for the algorithm parameters,
and provided insight into the effects of varying parame-
ter values on the registration performance. An auto-tune
method was also described which automatically tunes nec-
essary parameters, making the registration method fully
automatic. Accuracy studies showed that the algorithm’s
performance is comparable to similar existing methods,
and a clinical validation study showed that the registra-
tion method could accurately stabilize gated sequences of
the beating heart for gated frame rates at and below 25Hz,
indicating the registration method is able to operate in the
presence of small degrees of non-rigid deformation.
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