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Abstract

Measurement of the shape and motion of the mitral valve annulus has proven useful in a number of applications, including
pathology diagnosis and mitral valve modeling. Current methods to delineate the annulus from four-dimensional (4D)
ultrasound, however, either require extensive overhead or user-interaction, become inaccurate as they accumulate tracking
error, or they do not account for annular shape or motion. This paper presents a new 4D annulus segmentation method to
account for these deficiencies. The method builds on a previously published three-dimensional (3D) annulus segmentation
algorithm that accurately and robustly segments the mitral annulus in a frame with a closed valve. In the 4D method,
a valve state predictor determines when the valve is closed. Subsequently, the 3D annulus segmentation algorithm finds
the annulus in those frames. For frames with an open valve, a constrained optical flow algorithm is used to the track the
annulus. The only inputs to the algorithm are the selection of one frame with a closed valve and one user-specified point
near the valve, neither of which needs to be precise. The accuracy of the tracking method is shown by comparing the
tracking results to manual segmentations made by a group of experts, where an average RMS difference of 1.67±0.63mm
was found across 30 tracked frames.
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1. Introduction

The mitral valve annulus is a fibrous saddle-shaped
structure that anchors the mitral leaflets, and is critical to
proper cardiac function. It is typically viewed in the clin-
ical setting using four-dimensional (3D+time) ultrasound
(4DUS), as ultrasound is inexpensive, portable, and non-
ionizing. The shape and motion of the annulus are used
in a number of applications, most commonly for pathol-
ogy diagnosis, as it has been shown that the there is a
strong correlation of annular shape and motion to several
pathologies [1–10]. It is also used as boundary conditions
for mitral valve models [11–16], to assess valve function
[17, 18], for surgical planning [19], and for implant design
[20].

Methods to delineate annular shape and motion include
tracking implanted radiopaque markers with fluoroscopy
[10, 21–23], tracking implanted sonomicrometry transduc-
ers [24], and time consuming manual segmentation from
imaging [1–9, 25–27]. Few automated methods have been
developed to delineate its four-dimensional (4D) shape
from ultrasound. There have been a number of semi-
automatic methods to track the annulus in 2D ultrasound
that generally require manual initialization of the mitral
anatomy, after which the annulus points are tracked using
some form of either block or template matching, optical

flow, active contours, dynamic programming, or a combi-
nation of these methods [28–31]. One of the first methods
to track the annulus in 4DUS is the work by Veronesi et
al., 2006 [32], which uses a combination of optical flow
and block matching to track manually initialized annulus
points in 4D. This method, however, does not constrain
the motion of the annulus, leading the authors to add that
“manual corrections were performed when required,” re-
vealing that the method accumulates tracking error that
causes the delineations to become inaccurate. Ionasec et
al., 2010 [33] delineate the 4D annulus by fitting a mitral
valve model to 4DUS data using machine learning tech-
niques. The method, while accurate, requires an expan-
sive database of thousands of manually delineated features
(that took the authors two years to compile), making the
method inaccessible to most.

Current 4D annulus delineation methods either require
extensive user interaction, do not take into account the
shape or motion of the annulus, or accumulate exces-
sive tracking error. To address these issues, we present
a new semi-automated 4D mitral annulus segmentation
(4DMAS) method for delineating the annulus in a 4DUS
sequence (Figure 1). From the user, it requires only the se-
lection of one frame with a closed valve and one point near
the valve. Using these inputs and our previously-presented
3D mitral annulus segmentation (3DMAS) method for
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Figure 1: Flow chart outlining the new 4D mitral annulus segmentation (4DMAS) algorithm. Specific details for the respective processes can
be found in the indicated sections.

closed mitral valves [34], the annulus in the selected frame
is found. A valve state predictor then uses this annulus to
determine those frames that contain a closed valve versus
those that contain an open valve. For those containing
a closed valve, the 3DMAS method is again used. For
those containing an open valve, a constrained optical flow
formulation based on the Lucas & Kanade method [35] is
used to track the annulus. In taking into account both
the valve state and the shape and motion of the annulus
in the optical flow method, the 4DMAS method limits the
accumulation of segmentation error.

The details of the 4DMAS method are presented in Sec-
tion 2. An analysis of the 4DMAS method is presented in
Section 3, which includes studies that examine the accu-
racy of the valve state predictor (Section 3.1) and the accu-
racy of the constrained optical flow method (Section 3.2).

2. Materials and Methods

2.1. 3D Mitral Annulus Segmentation Algorithm
The presented 4DMAS method builds on our previously

developed 3DMAS algorithm, which is able to accurately
segment the location of the annulus for closed mitral valves
[34]. It requires only the selection of a frame with a closed
valve and a point near the center of the valve. The 3DMAS
method ultimately provides the geometric prior of the an-
nulus which we then track to frames with an open valve.
The methods of computing a thin tissue detector and find-
ing a leaflet surface, which were developed for the 3DMAS
algorithm, are also used in the 4DMAS method to help
determine the valve state throughout a sequence. The
following sections explain how to integrate the 3DMAS
method and its components into a 4D annulus tracking
method that first predicts the valve state (open or closed)
and then alters the segmentation approach based on valve
state so that an accurate 4D annulus results with little
accumulation of error due to tracking drift.

2.2. Valve State Predictor
The 4DMAS method begins by first implementing the

3DMAS method on a user-specified frame using a specified
point. The selected frame will be referred to as the refer-
ence frame, Fref , and the resulting annulus as the refer-
ence annulus, Aref . Predicting the valve state in all other

frames is then done using information gathered from this
segmentation. To begin, a mitral leaflet surface is com-
puted in each frame as described in [34]. Regardless of
whether the valve is open or closed in a frame or whether
the leaflets are visible or not, due to the nature of the
surface generation method, which is a max-flow algorithm
run on a cylindrically shaped graph surrounding the valve,
a surface is always found in each frame (Figure 2). When
the valve is closed, the surface will reside at the leaflets,
however, when the valve is open, the surface will reside
somewhere in the blood pool formed by the left atrium
and left ventricle. We then assume the value of the thin
tissue detector and ultrasound intensity at the surface to
be higher for closed valves than for open valves, and based
on this we differentiate between the two states. Because
we are not interested in the surface outside of the region of
the valve, and because we know the valve moves roughly
along an axis that we can estimate from Aref [36], we
crop the surfaces in every frame by the projection of Aref

along the precomputed axis (Figure 2), keeping only the
region of the surfaces inside of the projected contour. We
then compute the mean ultrasound intensity value, µint,n,
and mean thin tissue detector value, µttd,n, at the cropped
surfaces. A valve score for each frame is then

VSn = (µint,n)[0−1] (µttd,n)[0−1] (1)

where (·)[0−1] indicates that the values for that term are
normalized across all frames to the range of 0 to 1, and n
indicates the frame number.

To group the frames into those that have a closed valve
versus those that have an open valve, the values of VSn are
clustered using a k-means clustering algorithm. Clusters
are initialized by assigning all values greater than the mean
of VSn to the “closed valve” cluster, and all others to the
“open valve” cluster. This is based on the assumption that
closed valves will have a higher mean ultrasound intensity
and thin tissue detector value at the cropped surface than
open valves. The distance metric used for the k-means al-
gorithm is the absolute value of the distance of each valve
score to the mean of the respective clusters. Lastly, the
valve score for Fref is always assigned to the “closed valve”
cluster to ensure a labeling consistent with the user’s se-
lection of a closed valve. An example of the clustering
results for the ultrasound sequence shown in Figure 2 can
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Figure 2: (Top Row) Slices from a 4DUS sequence showing a prolapsed mitral valve over a cardiac cycle, where the numbers indicate the
frame number. (Bottom Row) The same slices from the top row shown with the surfaces used in the valve state prediction, and the final
location of the segmented annulus. The white dashed lines in the bottom left image indicate the cropping boundaries used in the valve state
prediction, and are formed by the projection of Aref along the valve axis. This boundary is constant for all frames. The closed and open
valves are those as determined by the valve state predictor. It can be seen that when the valve opens, the surface cannot find closed leaflets
and so resides in the blood pool. The annulus is then found by tracking instead of direct segmentation. (LA - Left Atrium; LV - Left Ventricle)
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Figure 3: Mitral valve scores for the 4DUS sequence shown in Fig-
ure 2 using Frame 1 as the reference frame.

be seen in Figure 3. For simplicity, frames containing a
closed valve will herein be referred to as “closed frames,”
and similarly, frames containing an open valve as “open
frames.”

2.3. Annulus Segmentation for Closed Valves

Knowing those images that contain closed valves via the
valve state predictor, we segment the annulus in all closed
frames using the 3DMAS algorithm. The initially pro-
vided point in each frame that serves as the input to the
algorithm is no longer provided by the user, but is deter-
mined automatically by projecting the center point of the
originally segmented annulus along the valve axis onto the
respective mitral leaflet surface that was used to compute
the valve score.

2.4. Constrained Optical Flow

When the valve opens, it is no longer possible to seg-
ment the annulus using the 3DMAS method, and we must
track the annulus from one frame to the other. Similar
to previously published annulus tracking methods, we use

a variation of the Lucas & Kanade optical flow (LKOF)
algorithm, but unlike previous methods, we incorporate
shape information in the formulation. A desirable charac-
teristic of the LKOF method is the ability to compute the
optical flow for individual points. This reduces the com-
putational burden that other methods impose, such as the
Horn & Schunck method [37], which require the optical
flow to be computed over an entire volume. We know the
annulus is a continuous anatomical structure, and so we
would like to enforce a locally smooth displacement of the
annulus. However, unlike the Horn & Schunck method, the
LKOF method is not equipped to enforce a locally smooth
displacement field. We therefore modify the LKOF formu-
lation to enforce this constraint for the purpose of tracking
the mitral annulus.

The LKOF algorithm is based on the assumption that
the intensity for a target location changes little from one
frame to the next, and is formulated to minimize

E =
∑
x∈R

[F (x+ h)−G (x)]2 (2)

which is the sum of the squared differences for a small win-
dow, R, displaced by h in ultrasound intensity image F rel-
ative to image G. We want to track only the annulus from
one frame to the next, and so refer to the displacement of
point i along the annulus contour as hi = [hi1, hi2, hi3]T .
We know that hi should exhibit small local deviations, and
so in addition to minimizing the change in appearance of
a window around a point, we also want to limit its move-
ment based on the movement of neighboring points. We
quantify the local deviations in annular displacement as
∂2hi/∂s

2, and therefore aim to minimize at each point

Ei =
∑
x∈R

W(x) [F(x+hi)−G(x)]2 + α

(
∂2hi

∂s2

)T(
∂2hi

∂s2

)
(3)
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with respect to hi, where α is a scalar weight. We refer to
this method throughout the rest of this paper as the con-
strained Lucas & Kanade optical flow (CLKOF) method.
For this formulation, the position along the annulus con-
tour is parameterized by s. In the implementation, we
track N evenly spaced points along the contour, making
i ∈ {1, ..., N}. For this study, we use N = 24 and α = 500.
The weighting function

W (x) =
‖∇Ω(x)‖∑

x∈R ‖∇Ω(x)‖ (4)

is designed to give more importance to regions located at
a high gradient magnitude, where Ω refers to the intensity
of the ultrasound volume.

To find the hi that minimizes (3), similar to approaches
taken in [35, 38], we first approximate the first order
derivative of F and second order derivative of h as

∂

∂x
F (x) ≈ F (x+ hi)− F (x)

hi
(5)

∂2hi

∂s2
≈ hi−1 − 2hi + hi+1

∆s2
(6)

where ∂
∂x =

[
∂

∂x1
, ∂

∂x2
, ∂

∂x3

]
. We then substitute (5) and

(6) into (3), making (7) the function to minimize. Setting
∂Ei/∂hi = 0 and solving for hi, we get (8) as the solution
for hi, where I3 is the 3×3 identity matrix.

Ei =
∑
x∈R

W (x)
[
F (x) + hi

∂

∂x
F (x)−G (x)

]2
+

α

(
hi−1 − 2hi + hi+1

∆s2

)T(
hi−1 − 2hi + hi+1

∆s2

)
(7)

hi =

[∑
x∈R

(
∂

∂x
F (x)

)T
W(x)(G(x)−F(x))+

2α
∆s4

(hi−1+hi+1)

]

×
[∑

x∈R

(
∂

∂x
F (x)

)T

W(x)
(
∂

∂x
F (x)

)
+

4α
∆s4

I3

]−1

(8)

hk+1
i =

[∑
x∈R

(
∂

∂x
F (x′)

)T
W(x)(G(x)−F(x′))+

2α
∆s4

(
hk

i−1+h
k
i+1

)]

×
[∑

x∈R

(
∂

∂x
F (x′)

)T

W(x)
(
∂

∂x
F (x′)

)
+

4α
∆s4

I3

]−1

(9)

The solution to hi is dependent on hi−1 and hi+1, and
so we solve for hi by iterating (9), where h0

i = 0 and
x′ = x+hk

i . However, as opposed to using a single window
size to define R, we first use a large window to account for
large displacements that may occur from frame to frame.
We then use progressively smaller window sizes to stabilize

and converge to a more accurate solution for hi. For this
study, we execute 50 iterations at window sizes of 113,
93, 73, 53, and 33, in that order. The tracked annulus,
which is tracked from frame to frame starting from a closed
frame, is then interpolated (spline interpolation) to create
a continuous contour in space.

3. Results

The 4DMAS method consists of three major compo-
nents: a valve state predictor, an annulus segmentation
algorithm (3DMAS method), and an annulus tracking al-
gorithm (CLKOF method). As we presented validation of
the 3DMAS algorithm in [34], we present here an analysis
of the valve state predictor and annulus tracking method.
In the analysis, we used seven anonymized clinical trans-
esophageal echocardiography sequences (iE33 Echocardio-
graphy System with X7-2t transesophageal probe, Philips
Healthcare, Andover, MA, USA). To capture the entire mi-
tral valve throughout the ultrasound sequence, these had
to be acquired as EKG-gated full volume reconstructions.
Volume dimensions were roughly 200×200×200 voxels with
a resolution of 0.5–0.75 mm/voxel. More details about the
images and valves can be seen in Table 1.

An example of the results of the 4DMAS method are
shown in Figure 4 for the example sequence shown in Fig-
ure 2. As a comparison, also shown in the figure are the
results when tracking is performed with the original LKOF
method versus the CLKOF method, both using the win-
dow sizes and iterations as described. This highlights the
stability of the CLKOF method versus the LKOF method
for annulus tracking in ultrasound.

The algorithm was coded mostly in MATLAB (The
Math-Works, Natick, MA, USA), but used C++ for both
computing parts of the thin tissue detector and for the
implementation of the max-flow algorithm. In the vali-
dation studies, the parameter values used in the 3DMAS
algorithm are the same as those listed in [34]. The ap-
proximate time to compute the annulus for closed and
open valves (64-bit PC, 3.0 GHz Intel Core 2 Duo pro-
cessor with 4GB of RAM) was roughly 90 and 30 seconds,
respectively, which includes the time to determine valve
states.

Table 1: Summary of clinical mitral valve images used in the valida-
tion studies.

Valve Mitral Valve State Frames in Sequence
1 Prolapse; Regurgitation 12
2 Prolapse; Dilated Annulus 20
3 Normal 11
4 Normal 15
5 Cleft Mitral 16
6 Normal 13
7 Prolapse 13
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Figure 4: Comparison of the resulting 4D annulus delineation for the example 4DUS sequence shown in Figure 2 when tracking is performed
using the original LKOF method (i.e. minimizing (2)) versus the CLKOF method (i.e. minimizing (3)).

3.1. Valve State Predictor Accuracy Study

Essential steps in computing the valve state predictor
are finding the mitral leaflet surface in every frame, and
then cropping the surfaces by the projection of Aref seg-
mented from the user-specified reference frame, Fref . The
valve state predictor is then dependent on Fref . The user-
specified point has no effect on the predictor, as the annu-
lus segmentation in a closed frame is operator-independent
for any reasonably placed point [34]. We therefore present
here an analysis of the valve state predictor’s accuracy
and how it is affected by the user’s choice of the reference
frame.

For this study, we manually selected those frames that
contained a closed valve (closed frames) versus those that
contained an open valve (open frames), where a closed
valve was defined to be a valve with leaflets completely
coapted. We considered each closed frame as a potential
candidate for Fref and subsequently computed the valve
state predictor as described in Section 2.2 using each of
these frames as Fref . Because computing the valve state
predictor is dependent on automatically computing Aref

Table 2: Valve state predictor accuracy across all potential reference
frames. Closed Valves and Open Valves are those frames manually se-
lected to contain a closed or open mitral valve, respectively. %Closed
and %Open indicate the percentage of frames in a category that the
valve state predictor labeled as containing either a closed or open
valve, respectively.

Data Closed Valves Open Valves
Set %Closed %Open %Open %Closed
1 100 0 100 0
2 100 0 100 0
3 100 0 100 0
4 93.1 6.9 100 0
5 100 0 100 0
6 100 0 100 0
7 100 0 100 0

Group 99.2 0.8 100 0

using the 3DMAS method, which can only be done for
closed valves, we did not consider open frames as a po-
tential candidate for Fref . The collective accuracy of the
valve state predictor across all potential reference frames
is shown in Table 2. This table shows that the valve
state predictor was on average 99.2% accurate in identify-
ing closed frames and 100% accurate in identifying open
frames, suggesting that the predictor is insensitive to the
choice of Fref when it contains a closed valve.

3.2. 3D Annulus Tracking Validation
3.2.1. CLKOF Method vs. Human Observers

To assess the accuracy of the tracking method, we com-
pared the annulus tracking results to manual delineations
made by a group of three experts. We provided the ex-
perts with slices from 4DUS of the mitral valve, where
slices were taken at 10 degree increments about the mi-
tral axis. Within each image the experts had access to
temporal information available from the entire ultrasound
sequence.

 

Figure 5: Typical comparison between the annulus tracked by the
human observers (colored points) and that tracked using the CLKOF
method (solid contour).
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Table 3: RMS of the Euclidean distance of the automatically tracked
annulus from the mean of the manually tracked annulus points.

Data RMS Distance (mm) No. of
Set (mean ± std. dev.) Open Frames
1 1.96± 0.70 3
2 0.75± 0.06 4
3 2.30± 0.40 5
4 1.04± 0.07 5
5 1.71± 0.26 4
6 2.02± 0.38 6
7 1.86± 0.44 3

Group 1.67± 0.63 30

Table 4: RMS of the Euclidean distance of each experts’ manually
tracked annulus from the mean computed from the other two experts’
manual segmentations and the CLKOF tracked annulus.

RMS Distance (mm) No. of
Data (mean ± standard deviation) Open
Set Expert1 Expert2 Expert3 Frames
1 2.04±0.30 3.02±0.07 2.40±0.51 3
2 0.83±0.13 1.81±0.08 1.16±0.05 4
3 2.05±0.19 3.01±0.22 5.62±0.86 5
4 0.66±0.06 1.20±0.17 1.14±0.06 5
5 1.02±0.21 1.98±0.08 1.69±0.34 4
6 1.83±0.41 2.60±0.36 1.50±0.24 6
7 1.49±0.33 3.01±0.62 1.69±0.05 3

Group 1.99± 1.15 30

As the 4DMAS method operates by tracking to open
frames the annulus segmented automatically from a closed
frame, we similarly asked the experts to do the same. We
did this by providing the experts with the location of the
automatically segmented annulus in the closed frames im-
mediately neighboring the open frames. We then asked
the experts to track the location of the displayed annulus
to the neighboring frames containing an open mitral valve
by clicking on the tracked annulus point locations in each
slice. From the seven data sets, 30 frames total were used
for this study. The manual tracking of an annulus from one
frame to a neighboring frame took roughly 5 minutes on
average across all participants and all tracked frames. A
typical comparison between a manually and automatically
tracked annulus is shown in Figure 5.

We computed accuracy measures for the CLKOF
method by measuring the distance of the automatically
tracked annulus to the mean of the points delineated by
the experts. The results from the analysis for each data
set can be seen in Table 3, where it is shown that across
the seven data sets (30 frames total), there was an average
RMS difference of 1.67±0.63mm of the algorithm annulus
to the mean of the experts.

The previous analysis treats the expert mean as a gold
standard as a means of computing an error for the CLKOF
method, however, it is also important to gauge the rela-
tive performance of the group of experts and the algorithm
to determine if there is a discernible difference between

Table 5: Distance between an annulus delineated using the CLKOF
tracking method from an annulus segmented using the 3DMAS
method for closed frames n− 1 and n + 1 neighboring the randomly
selected frame n.

RMS Distance (mm)
Data Set Framen−1 Framen+1

1 0.38 0.45
2 0.31 0.48
3 0.55 0.68
4 0.34 0.50
5 0.78 0.59
6 0.38 0.56
7 0.48 1.56

Avg.±Std. Dev. 0.58 ± 0.31

the two groups. To perform this analysis, we repeated
the analysis that was done for the CLKOF method for
each expert. The difference being that in this study, a
given expert’s segmentation was compared to the mean
computed using the segmentations from the other two ex-
perts and the CLKOF algorithm, thereby treating the al-
gorithm as an equal participant. The results of this anal-
ysis can be seen in Table 4. While the overall perfor-
mance of the CLKOF method (RMS = 1.67±0.63mm,
n = 30) was slightly better than that of the group of
experts (RMS = 1.99±1.15mm, n = 90) in that the
CLKOF method had a lower mean RMS distance, the dif-
ference between the two groups is not statistically signif-
icant (p = 0.062), suggesting that the CLKOF method
performed at least as well as the group of experts.

3.2.2. CLKOF Tracking Method vs. 3DMAS Method for
a Closed Valve Annulus

We showed in Section 3.1 that when the valve state pre-
dictor mislabels a valve, it fails by mislabeling a closed
valve as an open valve (Table 2, Data Set 4). In this
case, the CLKOF method is employed instead of using the
3DMAS algorithm. As the 3DMAS algorithm was shown
in [34] to be highly accurate, it is important to know how
much an automatically segmented annulus and a tracked
annulus differ for a closed valve. A typical comparison
of the resulting annuli from the two methods is shown in
Figure 6.

In this study, for each data set we randomly chose a
frame with a closed valve and tracked the annulus to
neighboring frames with a closed valve using the CLKOF
method. Additionally, we computed the automated an-
nulus segmentations for the same neighboring frames us-
ing the 3DMAS method. We then compared the differ-
ent annulus delineations by computing the RMS distance
between the two annulus point sets. The results of the
analysis are shown in Table 5, where the average RMS dif-
ference across all data sets was found to be 0.58±0.31mm,
which is on the order of the volume resolution.
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Figure 6: Typical comparison between an annulus delineated using
the CLKOF tracking method (black) and the 3DMAS method (gray)
for a closed valve.

4. Discussion

4.1. Performance and Validation

The 4DMAS method is unique in that it constructs a
4D annulus by first detecting whether a valve is open or
closed in a given frame so that the segmentation approach
can be appropriately altered. We showed that the valve
state predictor is highly accurate, with over 99% correct
assignment to the correct state in validation tests. When
the valve state predictor did not coincide with the manual
clustering, it did so by predicting that a closed valve was
actually an open valve, and was the result of the valve be-
ing in a transition state. In this case, the CLKOF method
would be used to track the annulus from a neighboring
frame to the mislabeled frame instead of using the 3DMAS
method to automatically segment the annulus. We showed
in our analysis that the average RMS difference between a
tracked (CLKOF) annulus to a segmented (3DMAS) an-
nulus for closed valves was 0.58±0.31mm, indicating that
the penalty associated with mislabeling a closed valve as
an open valve is small. A more significant failure would
be if the valve state predictor mislabeled an open valve as
a closed valve. In this case, the 3DMAS algorithm would
be employed for an open valve, and because the 3DMAS
algorithm was not designed for open valves, the error as-
sociated with this mislabeling is substantial.

The accuracy of the 4DMAS method is not only a re-
sult of being able to predict the valve state, but having
predicted the valve state, using accurate methods to find
the annulus. We showed in [34] that the 3DMAS algo-
rithm is accurate and robust when finding the annulus for
closed mitral valves. In this manuscript, we showed that
the CLKOF tracking method is as accurate at segmenting
the annulus of open valves. In comparing the automated
tracking results to manual delineations made by a group
of experts across 30 frames, we found an average RMS
difference of 1.67±0.63mm. This is on the same order of
accuracy as the 3DMAS method, which had an RMS dif-
ference of 1.81 ± 0.78mm when compared to manual an-
nulus delineations made by a group of 10 experts on 10

different valves. Additionally, we showed that when com-
paring the overall performance of the CLKOF algorithm
(RMS = 1.67±0.63mm, n = 30) to that of the group of
three experts (RMS = 1.99±1.15mm, n = 90), while the
algorithm tended toward better performance, there was no
statistically significant difference between the two groups
(p = 0.062).

The CLKOF tracking method performs well for annulus
tracking in ultrasound because it can compensate for noise
and inhomogeneities in the ultrasound volume by taking
advantage of the correlation between the motion of neigh-
boring points. Referring back to (8), which is the solution
for the displacement, hi, of point i along the annulus, it
follows that the contribution of the imaging and the prior
knowledge about annular geometry are controlled by the
scalar weight α. In setting α to zero, the solution for hi

is the same as originally derived by Lucas & Kanade [35].
In this case, tracking results are dependent entirely on the
imaging. An example of the resulting annulus can be seen
in the bottom row of Figure 4. Conversely, if α is made
to be large or if the imaging provides little information
(i.e. ∂F

∂x ≈ 0), then hi ≈ 1
2 (hi−1 + hi+1) (i.e. the displace-

ment is the average of the displacement of the neighboring
points). Therefore, assuming α is neither too small nor
too large, the annulus tracking would be dictated mostly
by the imaging in areas of high definition in the ultrasound
volume, and by the geometric prior in areas of low defi-
nition. The result is a more stable and accurate tracking
of the annulus. The implementation of a constrained op-
tical flow algorithm has also shown to be useful in other
previous applications such as face tracking [39] and left
ventricle motion detection in MR images [40].

When compared to previous automated methods for 4D
annulus segmentation from ultrasound ([32] and [33]), the
presented method offers notable improvements in several
areas, the first of which is the amount of overhead and de-
gree of user-interaction. Previous methods either required
manual initialization of an annulus, intermittent manual
corrections of an automated algorithm, or a large database
of manually selected feature locations. Conversely, the
4DMAS method requires only the selection of a frame with
a closed valve and a point near the center of that valve.
Secondly, because of the accuracy of the valve state pre-
dictor and the insensitivity of the 3DMAS method, the
results of the 4DMAS method are likewise insensitive to
the user’s input, resulting in an operator-independent 4D
annulus segmentation. Lastly, the extensive analysis per-
formed both on the 3DMAS method in [34], on the valve
state predictor, and on the CLKOF tracking method make
the 4DMAS method the most well validated 4D annulus
segmentation algorithm.

4.2. Algorithm Design

As alluded to in Section 2.1, the 3DMAS method is de-
signed for ultrasound images where the thin leaflet tissue
is visible. Additionally, both the 3DMAS and CLKOF
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methods are designed for when the entire mitral annu-
lus is contained in the conical ultrasound volume. As a
result, the 4DMAS method is designed for ultrasound im-
ages acquired with an en face view of the mitral valve and
that contain the complete mitral annulus in the conical
data volume throughout the cardiac cycle. This is why
the 4DMAS validation studies used EKG-gated full vol-
ume reconstruction images of the mitral valve. However,
if similar views could be obtained with the higher tempo-
ral resolution as seen in live 3D acquisitions, these would
be preferred.

While the 4DMAS relies on imaging to predict valve
state, one might argue that using an EKG signal might
prove to be simpler and just as effective, as there should
be a correspondence between the signal and the valve
state. However, there are many reasons why an image-
based valve state predictor is preferred over the EKG sig-
nal. One reason is that the EKG signal can be adversely
affected by many variables in the operating-room environ-
ment. Additionally, depending on disease states, the elec-
trophysiology of the heart may not correspond to the valve
state. For instance, in the case of systolic anterior motion,
the mitral valve may in fact be pulled open during systole.
It is then more reliable to use the appearance of the heart
in imaging to predict state rather than make predictions
based on correlations to electrophysiology.

In the CLKOF method, it is worth noting that the scalar
weight α was tuned to a constant of 500, as this was found
to adequately balance both the contribution of the imag-
ing and the geometric prior. However, α need not be set
to a constant, but could be determined dynamically as a
function of position of an annulus point along the contour,
local curvature of the contour, or local imaging character-
istics. Given the accuracy of the current method, however,
the benefit of this dynamic assignment is likely small.

A current limitation of the 4DMAS method is that, due
to separate executions of the 3DMAS method on closed
frames, a correspondence between annular points of neigh-
boring closed frames is not inherent. Therefore, while the
annular geometry is tracked as a whole throughout the car-
diac cycle, specific annular points are not. We could com-
pensate for this, however, by using geometric constraints
and similarity measures, such as ultrasound intensity or
thin tissue detector patterns, to determine a correspon-
dence between annuli after they have been segmented.

4.3. Future Work
The mitral annulus is an important cardiac structure

that is widely studied both clinically and for research pur-
poses. The presented method, being that it is accurate
and requires little user interaction, could serve to expe-
dite a number of new studies. Knowing the valve state
in a frame could also prove valuable in future work to de-
termine the temporal location of a frame relative to the
cardiac cycle without using an EKG signal. This could be
useful information in related segmentation efforts, such as
mitral leaflet or left ventricle segmentation. Also, because

the presented method can determine valve state and switch
between direct segmentation and tracking, it does not ac-
cumulate substantial tracking error, and could be used to
analyze longer ultrasound sequences than those studied.

Future work will also include addressing the limitations
on the images for which the 4DMAS method will success-
fully and accurately segment the mitral annulus - in par-
ticular, the limitation that the entire mitral annulus needs
to be contained in the ultrasound volume throughout the
cardiac cycle. Currently, to obtain such an ultrasound
sequence, EKG-gated full volume reconstructions are ac-
quired. However, this consequently lowers the frame rate.
It would be beneficial to design methods to construct large
field-of-view images with high temporal resolution.

5. Conclusion

The presented 4D mitral annulus segmentation method
is an accurate and robust means of delineating the annu-
lus throughout a 4DUS sequence. It finds the 4D annulus
by first using a valve state predictor to determine those
frames that contain a closed valve versus those that con-
tain an open valve. We found that the valve state pre-
dictor was on average 99.2% accurate in identifying closed
valves and 100% accurate in identifying open valves. For
closed valves, our previously presented 3D annulus seg-
mentation method is used to find the annulus. For open
valves, a constrained optical flow algorithm is used that
takes into account annular shape and motion. In com-
paring the tracking results of the CLKOF algorithm to
manually tracked points, we found an average RMS dif-
ference of 1.67±0.63mm. While the CLKOF algorithm
tended to outperform the experts, the difference between
the two groups was not statistically significant (p = 0.062),
suggesting that the algorithm performed at least as well
as the experts. The 4D annulus segmentation method re-
quires from the user only the selection of one frame with
a closed valve and one point near the valve in that frame.
We showed that resulting 4D annulus is essentially inde-
pendent of these inputs.
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