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Abstract—The shape of the mitral valve annulus is used in
diagnostic and modeling applications, yet methods to accurately
and reproducibly delineate the annulus are limited. This paper
presents a mitral annulus segmentation algorithm designed
for closed mitral valves which locates the annulus in three-
dimensional ultrasound using only a single user-specified point
near the center of the valve. The algorithm first constructs a
surface at the location of the thin leaflets, and then locates the
annulus by finding where the thin leaflet tissue meets the thicker
heart wall. The algorithm iterates until convergence metrics are
satisfied, resulting in an operator-independent mitral annulus
segmentation. The accuracy of the algorithm was assessed from
both a diagnostic and surgical standpoint by comparing the
algorithm’s results to delineations made by a group of experts on
clinical ultrasound images of the mitral valve, and to delineations
made by an expert with a surgical view of the mitral annulus
on excised porcine hearts using an electromagnetically tracked
pointer. In the former study, the algorithm was statistically
indistinguishable from the best performing expert (p = 0.85) and
had an average RMS difference of 1.81± 0.78mm to the expert
average. In the latter, the average RMS difference between the
algorithm’s annulus and the electromagnetically tracked points
across six hearts was 1.19± 0.17mm.

Index Terms—Mitral Valve, Annulus, Segmentation, Ultra-
sound, Graph Cuts.

I. INTRODUCTION

THE mitral valve annulus is an important cardiac structure
that is defined as the fibrous saddle-shaped structure that

anchors the mitral leaflets. Characterization of the geometry
of the mitral annulus has proven valuable in an array of
applications. Clinically, studies on annulus shape have shown
that there is a correlation between annular geometry and
pathology [1]–[5], and that the annulus can be used in the
assessment of valve function [6], [7]. The annulus shape is
also commonly used in surgical planning for valve repair [8]
and in prostheses design [9]. In modeling, the annulus defines
the boundary conditions for models simulating the mechanics
of the leaflets during valve closure [10]–[14].
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The mitral annulus is most commonly visualized using
ultrasound, given that ultrasound is a cheap, portable, and
non-ionizing imaging modality capable of capturing the fast
moving valve structures. Prior to three-dimensional ultrasound
(3DUS), delineating the shape of the annulus was difficult,
leading to the assumption that the annulus was planar, in-
stead of saddle-shaped as is now apparent [6]. Even after
the advancement from 2D to 3D ultrasound, visualizing the
annulus remains a problem due to imaging noise and volume
visualization limitations.

Despite widespread use of the annulus in both clinical
and research applications, available methods to extract an
accurate and reproducible geometry remain limited. One of
the most common methods used in research applications is
to segment and track implanted fiducials, such as tracking
radiopaque markers with fluoroscopy [15]–[18] or tracking
sonomicrometry transducers [19]. This is an invasive approach
not feasible in a clinical setting. Another common method is
manual segmentation of images [2]–[5], [20]–[22], which in
addition to being tedious and time consuming, is also prone
to inaccuracies. One reason is that the usual practice is to
pick points in 2D slices taken from a 3D volume, so the user
only has access to a portion of the available information at
any given step, forcing the user to mentally interpolate 3D
information. The methods presented in [23] and [24] attempt
to correct for the deficiencies in these manual slice-based
segmentations, but do so by smoothing the segmentations
without referring back to the original 3D data from which
they were made.

Semi-automatic methods to delineate the 3D annulus from
3DUS are presented in [25] and [26]. The former method seg-
ments the annulus by compiling semi-automated annulus point
delineations in 2D slices into a 3D annulus structure. As in the
case of manual segmentation, this method does not take into
account information in neighboring slices, so it suffers from
inaccuracies and spatial inconsistencies. The latter method
segments the annulus as a consequence of fitting an entire
mitral valve model to 3DUS data using learning techniques,
which consequently requires a training database of manually
delineated points. The resulting accuracy of the method for the
purpose of patient-specific annulus segmentation is unclear,
as comparisons are only made to published population valve
dimensions.

We present in this manuscript an accurate and robust seg-
mentation algorithm (Fig. 1) designed to segment the mitral
annulus in an ultrasound volume containing a closed valve.
The algorithm begins by first finding a surface at the location
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Fig. 1. Flow chart for the mitral annulus segmentation algorithm designed for closed valves which locates the annulus by first finding the thin leaflet tissue
and then finding where the thin tissue meets the thick tissue of the surrounding heart wall. Specific details for the respective processes can be found in the
indicated sections.

of the thin leaflets. The surface is constructed near a user-
provided point using a thin tissue detector and the max-flow
algorithm. The algorithm then locates the annulus by finding
where at the surface the thin leaflet tissue meets the thicker
tissue of the surrounding heart wall. This is done using the
max-flow algorithm and active contour methods in projection
images created from the surface and surroundings. A 3D mitral
annulus contour is computed by projecting the annulus contour
in the images back onto the mitral leaflet surface.

The details of the algorithm are described in Section II.
An analysis of the algorithm is then presented in Section III,
which includes studies which validate the algorithm’s accuracy
(Sections III-A and III-B), and an analysis of the sensitivity
of the algorithm to the user-provided point (Section III-C).

II. ALGORITHM DESIGN

A. Ultrasound Data

The acquired data for this study was in the form of full
volume reconstructions, allowing for the visualization of the
entire mitral valve in a single 3DUS volume (iE33 Echocardio-
graphy System with transesophageal, X7-2t, and transthoracic,
X7-2, probes, Philips Healthcare, Andover, MA, USA). The
condition of the valves ranged from normal to varying types
and degrees of pathology. While the position and orientation
of a valve within a volume varied, the segmentation algorithm
requires that the thin tissue of the leaflets can be seen across
the entire valve.

From each 4D data set (3D + time), a single ultrasound
frame containing a closed valve was selected. The frame was
chosen at or near peak systole, as this is a time in the cardiac
cycle when the valve is closed and moving slowly. Restricting
the selection to closed valves enabled accurate computation of
a surface at the location of the leaflets. The dimensions of the
volume were roughly 200×200×200 voxels, with a resolution
on the order of 0.5-0.75 mm per voxel. In this manuscript, the
selected 3DUS volume is referred to as Ω, and individual voxel
locations as vi, where each vi has corresponding (xi, yi, zi)
coordinates. For Ω with N voxels, i ∈ {1, ..., N}.

B. Thin Tissue Detector

Delineating the location of the annulus directly from 3DUS
is difficult, so the algorithm first segments the location of the
leaflets using a thin tissue detector. The thin tissue detector
(TTD) highlights thin structures at a particular scale in the
3DUS volume. The TTD is computed using characteristics of
the gradient field of both Ω and ΩF , where ΩF is a filtered
version of Ω, reducing the effects of speckle in the volume.
ΩF is computed by convolving Ω with a Gaussian kernel,
G (σ), with standard deviation, σ, approximately equal to half
the maximum expected thickness of the mitral leaflets, taking
into account any abnormal thickness due to disease state. The
kernel dimension is 4σ+1 to include two standard deviations.

The TTD is computed using the results of three computa-
tions. The first of these

Θ (vi) =

∑J−1
a=1

∑J
b=a+1 arccos

(
∇ΩF (va)·∇ΩF (vb)
|∇ΩF (va)||∇ΩF (vb)|

)
∑J−1
j=1 j

(1)

is a measure of the average angle between gradient vectors
of ΩF within a neighborhood, where ∇ denotes the gradient
operator. A neighborhood at vi is defined as the set of all
neighboring voxels, vj , which are contained within the cube
of side length p centered at voxel vi, making j ∈ {1, ..., J},
with J = p3 for a cubical neighborhood. At the location of
the leaflets, there will be opposing gradient fields as a result
of the dark blood pools above and below the thin, bright
leaflets. Therefore, Θ will have a higher value at the leaflets
in comparison to more homogeneous regions, such as in the
middle of the blood pool or thick tissue regions.

The gradient vectors at the leaflets should be pointing
inward, so

Φ (vi) =
6∑
q=1

K∑
k=1

(
∇ΩF (fk)
|∇ΩF (fk)|

· fq,norm
)

(2)

measures the flux of the vectors across the neighborhood
boundary faces. In computing Φ, the inward directed unit
normal of each boundary face is denoted fq,norm, where
q ∈ {1, ..., 6} for a cubical neighborhood. Neighbors with a
face adjacent to face q are denoted fk, where k ∈ {1, ...,K}
and K = p2 for a cubical neighborhood.
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Fig. 2. (Left) Slice from a 3DUS volume of a prolapsed mitral valve showing
the location of the mitral valve annulus (MVA), left atrium (LA), left ventricle
(LV), and ventricular septum (VS). (Right) Corresponding slice from the thin
tissue detector (inverted for clarity) computed for the 3DUS volume.

Θ and Φ are computed using directions of gradient vectors
but not their magnitude, meaning they contain no information
about edges. However, the mitral leaflets are near two strong
edges as a consequence of the thin tissue residing between two
blood pools. Therefore, to quantify the number and proximity
of strong edges to a voxel

Π = G (σ) ∗ |∇Ω| . (3)

The complete TTD is then
(
Θ Φ[0−1] Π

)
[0−1]

, where
(·)[0−1] indicates that the values for that term are normalized
to the range of 0 to 1. High TTD values indicate that the voxel
is likely part of a thin structure and potentially at the location
of the mitral leaflets. The TTD computed for a 3DUS image
of a prolapsed mitral valve is shown in Fig. 2, where the TTD
is inverted to better show the highlighted thin tissue regions.

C. Valve Position & Orientation
To accurately construct a surface at the location of the mitral

leaflets, an initial estimation of the position and orientation of
the mitral valve relative to the volume is needed. In the first
iteration of the algorithm, the position is determined by the
user, who is asked to provide a point, xc, somewhere near
the center of the valve but not necessarily on the valve. In
subsequent iterations, assuming they are needed, xc is defined
as the center of the computed annulus from the previous
iteration.

Given xc near the center of the valve, the orientation of
the mitral valve is then estimated by computing a corre-
sponding best-fit mitral valve plane. The idea is to threshold
to separate leaflet tissue and blood, then fit a plane to the
tissue. This is done by first clustering the values of the
TTD from voxels residing in a spherical region of interest of
radius rpca centered at xc into two clusters using a k-means
algorithm. The sample mean and standard deviation of the
TTD at voxels for the cluster likely containing the leaflets,
which is the cluster with the higher TTD average, are denoted
µhigh and σhigh, respectively. A principle-component analysis
(PCA) on the set of voxels vpca : {vi|TTD (vi)>( µhigh −
σhigh ) ∩ |vi − xc| ≤ rpca} then defines the orientation of the
cluster. The mitral valve plane, MVplane, is then the plane
passing through xc with normal direction nc equal to the
direction of least variance as determined in the PCA.

}

} }

}
Edge, E

Node, V

Min-Cut

Source

Sink

Source

Sink

Edge, E

Node, V

(a) (b)

Fig. 3. Generalized graph structures used in the mitral annulus segmentation
algorithm: (a) 2D graph with a min-cut example, (b) 3D rectilinear graph

D. Graph Construction and the Max-Flow Algorithm

The annulus segmentation algorithm makes extensive use of
the max-flow algorithm [27]. Generically, a graph, Γ=〈V,E〉,
is a set of nodes, V , connected by edges, E, which have either
a directed or undirected capacity. In the case of the max-flow
algorithm, there are also two special nodes called the source
and the sink. The max-flow algorithm finds the maximum
flow which can originate from the source, flow through the
edges of predefined capacity, and enter the sink. In doing so,
according to the min-cut/max-flow theorem [28], the max-flow
algorithm generates a set of saturated edges called the min-cut
which separates the graph into two regions – one containing
the source and another containing the sink.

A generalization of the graph construction used in the
algorithm is shown in Fig. 3, where the 2D and 3D graphs
are used to find contours and surfaces, respectively. The
graph construction, in particular attaching the source and sink
to opposite ends of the graph, allows us to enforce prior
knowledge that the min-cut should reside between the opposite
ends.

E. Mitral Leaflet Surface via Max-Flow

With an estimation of the valve position and orientation, a
graph can be constructed on which we implement the max-
flow algorithm to find a surface at the location of the mitral
leaflets. The graph, Γsurf =〈Vs, Es〉, resides within a cylinder
of radius rgraph and height 2rgraph which is centered at xc
with an axis directed along nc. The graph consists of nodes
Vs located on a rectilinear grid directed along nc with a one
voxel spacing, and undirected edges Es which connect the
nodes, making Γsurf 6-connected except on the edges of the
graph. The source connects to all nodes on one face of the
cylinder, while the sink connects to all nodes on the opposite
face (Fig. 4).

To find a surface at the location of the leaflets, we define
the edge capacities, Es,p and Es,o, in (4) and (5), respectively,
such that between connected nodes Vs,i and Vs,j

Es,p =
ωp

1 + αs (TTD (Vs,i) + TTD (Vs,j))
2 (4)

Es,o =
ωo

1 + αs (TTD (Vs,i) + TTD (Vs,j))
2 (5)
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Fig. 4. Position, orientation, and cylindrical boundary of the 3D rectilinear
graph used to find the mitral leaflet surface

where ωp, ωo, and αs are scalar weights. This form lowers
the edge capacity around the leaflets, encouraging the min-
cut to be located at the leaflets. Es,p defines the capacity for
edges parallel to nc, and Es,o the capacity for all other edges.
This is an anisotropic edge capacity assignment [29] used to
control the curvature of the surface: ωp < ωo encourages a flat
surface, while ωp > ωo allows for a high curvature surface.
For those edges where one of the nodes is either the source
or the sink, the edge capacity is set to infinity.

The min-cut is found using the max-flow implementation
by Kolmogorov [30]. The resulting min-cut defines the mitral
valve leaflet surface, MVsurf . Assuming xc is located near the
center of the valve and rgraph is sufficiently large, MVsurf
extends beyond the leaflets and contains the mitral annulus.

F. Projection Image Formation

The annulus is where the thin leaflets connect to the thicker
cardiac walls. We therefore search at and around MVsurf ,
which contains the annulus, for this location. Because the
curvature of MVsurf was controlled using ωp and ωo in
the max-flow implementation, MVsurf is a regular surface
in <3 that can be described as the graph of a function, Zsurf ,
described in the x′y′-plane

MVsurf (x′, y′) = (x′, y′,Zsurf (x′, y′)) . (6)

The x′y′z′-coordinate system is centered at xc with the z′ axis
parallel to nc (Fig. 5).

The annulus, a closed curve on MVsurf , therefore projects
to a closed planar curve in the x′y′-plane. To locate this planar
curve, two images, Pint and Pttd, are used, where

Pint (x′, y′) =
2σ∑
ζ=σ

Ω (x′, y′,Zsurf (x′, y′)± ζ) (7)

Pttd (x′, y′) = TTD (x′, y′,Zsurf (x′, y′)) . (8)

Examples of the images are shown in Fig. 5. Pint is the value
of Ω in regions above and below MVsurf , excluding a band
of thickness 2σ where the leaflets are located, and provides
information about where the tissue surrounding the leaflets
resides. Pttd is the value of the TTD at MVsurf , and provides
information about where the thin tissue resides at the surface.

(a) (b) (c)

z′ ,nc

y′

Fig. 5. (a) Slice normal to the valve plane from 3DUS of a prolapsed mitral
valve (same data as shown in Fig. 2) showing MVsurf (black) and adjacent
regions (white striped) used to form Pint, (b) intensity projection Pint, and
(c) thin tissue detector projection Pttd. Projection images are only defined
within the dotted circles.

It is clear from the example images of Pint and Pttd in Fig. 5
that there exists a centrally located dark region in Pint and a
bright region in Pttd. This region corresponds to the location
of the mitral valve in the projection space, making the annulus
the border of this region.

G. Projected Mitral Annulus Contour

The border that we wish to delineate in the projection space,
which corresponds to the projected location of the mitral
annulus, is a single closed contour which can be delineated
with such methods as snakes [31] or level sets [32]. These
methods, however, are sensitive to initial contour position and
generally require a manually initialized contour. To avoid the
variability inherent in user input, we developed an automated
method which initializes contours by computing min-cuts on
2D graphs using the max-flow algorithm, with edge capac-
ities derived from both Pint and Pttd for added robustness.
This method is preferred over our preliminary method which
initialized generic contours in the projection images [33]. To
overcome noise and anatomic variability in Pint and Pttd,
multiple spatial scales of the projection images are used to
construct multiple resolution-specific contours. Treating these
contours as snakes and forcing them to a common location
in high resolution versions of Pint and Pttd produces a single
contour at the desired location. A summary of the approach
is shown in Fig. 6. The advantage of using the method of
snakes versus level sets is it allows for a simple integration
of an attractive energy between contours and does not allow
a contour to split during its evolution.

Max-Flow Initialization
Using Highest

Pint and Pttd Resolution

...

Max-Flow Initialization
Using Lowest

Pint and Pttd Resolution

Multi-Snake Convergence
Using High Resolution

Pint and Pttd

@
@
@R

�
�
��

-

Contour Initialization
(Sec. II-G1)

Contour Evolution
(Sec. II-G2)

Fig. 6. Contour initialization and evolution scheme for finding the annulus
in the projection plane
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Fig. 7. Graph used in the max-flow algorithm for contour initialization in
the projection space, along with an example of a min-cut

1) Contour Initialization via Max-Flow: The graph,
Γcont=〈Vc, Ec〉, used in the max-flow implementation to ini-
tialize a contour in the projection space is shown in Fig. 7.
The nodes, Vc, are positioned along rays emanating from a
center point, xo. The rays span the defined projection space
and are evenly spaced at an angular offset of ∆γ, while nodes
are evenly spaced along the rays at an offset of ∆r. The nodes
nearest to the center connect to the source, while nodes farthest
from the center connect to the sink.

To initialize a contour at a specific resolution of the projec-
tion images, Pint and Pttd are first filtered using a Gaussian,
G(σn), to generate Fint,n and Fttd,n, respectively. For the case
where m different contours will be initialized at m different
resolutions, n ∈ {1, ...,m}. The values of Fint,n and Fttd,n at
the node locations are found using bilinear interpolation and
are normalized across all nodes to the range [0-1].

It is assumed that the border of the centrally located regions
surrounds the center of the rays, xo. To find this border, we
first compute at the node locations

Fdrv,n =
(
λint

∂Fint,n
∂R

− λttd
∂Fttd,n
∂R

)
(1− Fint,n)2 (9)

where λint and λttd are scalar weights and R is the direction
along a ray. This is a drive image that will help to define the
graph edge capacities, with high values at locations that are
most likely the desired border. Partial derivatives of Fint,n and
Fttd,n are computed along the rays because we would like to
find the location where Fint,n changes from dark to light as
we travel out from xo along a ray, rather than light to dark.
Similarly, we want to find the location where Fttd,n changes
from light to dark. Fdrv,n is scaled by the inverse of Fint,n to
encourage the contour to be found near the darker regions of
Fint,n.

The edge capacities, Ec,s,n and Ec,d,n, of the graph are
undirected and defined using Fdrv,n such that between con-
nected nodes Vc,i and Vc,j

Ec,s,n =
ωs

1 + αc (Fdrv,n (Vc,i) + Fdrv,n (Vc,j))
2 (10)

Ec,d,n =
ωd

1 + αc (Fdrv,n (Vc,i) + Fdrv,n (Vc,j))
2 (11)

∆φ

xs

Rn(φτ)

φτ

Fig. 8. Ray system on which snake nodes are forced to reside during contour
refinement and convergence, shown with an example snake

where ωs, ωd, and αc are scalar weights. Ec,s,n defines the
capacity for edges between nodes on the same ray, and Ec,d,n
defines the capacity for edges between nodes on different rays.
This is done to control the deviation of a contour from a circle:
ωs < ωd encourages a more circular min-cut, while ωs > ωd
allows for a less circular min-cut.

Due to the construction of the graph, nodal resolution varies
with distance from the center. Minimizing these variations
along the min-cut requires iterating the contour initialization
to force the ray center to the centroid of the area contained
within the min-cut. For the first iteration, xo is the projection
of the point xc onto the projection space. The final location
of the ray center is xf,n, and the final min-cut is contour Cn,
where n is specific to the resolution of the projection images.

2) Contour Convergence via Active Contours: The multiple
contours initialized using m different resolutions of Pint and
Pttd are forced to converge as snakes. This allows us to find
a balance between the expected shape of the contour and the
expected location of the contour determined from the images.

We restrict the nodes of the snake to reside on rays
emanating from a center point, xs, which is computed as the
centroid of the ray centers, xf,n, where n ∈ {1, ...,m}. The
rays are equally spaced at an angular offset of ∆φ (Fig. 8).
For snake n, the radial location of the snake node on ray φτ
is referred to as Rn(φτ ), where τ ∈ {1, ..., T} and T is the
number of rays, and is initially determined from the location
of Cn.

Snakes evolve simultaneously such that they are forced to
converge to a single snake. The energy used in the snake
evolution is

Esnake,n = ωdrvEdrv,n+ωxyExy,n+ωzEz,n+ωattEatt (12)

where ωdrv, ωxy , ωz , and ωatt are scalar weights. Edrv,n is
an image energy derived from the projection images, Exy,n is
the curvature energy of the snake in the projection plane, Ez,n
is the curvature energy of MVsurf at the snake location, and
Eatt is an attractive energy which forces the multiple snakes
to converge to a single snake.
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Image Energy

The image energy, Edrv,n, is derived in much the same way
that Fdrv,n is derived for the graph. Pint and Pttd are first
filtered using a Gaussian, G(σs), and normalized to the range
of [0-1] to generate Fint,s and Fttd,s, respectively. The image
energy is then

Edrv,n= (1−Fint,s)
2

(
λttd

∂Fttd,s
∂R

− λint
∂Fint,s
∂R

)∣∣∣∣
Rn

(13)

where λint and λttd are the same scalar weights used in (9),
and Edrv,n is normalized so that its magnitude is less than
one. Imparting force Udrv,n defined as

Udrv,n = −∂Edrv,n
∂R

(14)

on the snake nodes subsequently minimizes the image energy
at the location of the snake.

Contour Curvature Energy

To account for contour curvature but avoid undesirable
evolution of the snake in the absence of strong image forces,
as is common with typical methods [34], we use the method
presented in [35]. This method, instead of minimizing the
curvature of the snake, minimizes the change in curvature.
The energy Exy,n is then

Exy,n =
∣∣∣∣∂κn∂s

∣∣∣∣ (15)

where κ is the curvature of the contour and s is arc length.
Whereas the method in [35] minimizes (15) by moving

snake nodes to the perpendicular bisector of neighboring
nodes, we restrict the nodes to move along the rays. In doing
so, we find Rn,des(φi), which is the desired location of the
node from snake n along ray φi which will minimize (15).
Snake nodes are forced toward the location of Rn,des(φi) using
Uxy,n(φi) = Rn,des(φi)− Rn(φi).

Surface Height Curvature Energy

The shape of the surface at a snake’s location is easily
obtained, as it is known that MVsurf can be described as the
graph of a function, Zsurf , which is defined in the projection
space. Therefore, we can define Zn(φτ ) to be the height of
MVsurf above the node on snake n residing on ray φτ . Since
the annulus is not flat, but rather saddle-shaped, Ez,n is defined
as

Ez,n =
∣∣∣∣∂2Zn
∂φ2

∣∣∣∣ . (16)

This energy is minimized by imparting a force

Uz,n = −∂Ez,n
∂R

(17)

on the nodes, which encourages a constant local change in
elevation of the annulus contour with respect to changes in φ.

Attractive Energy

As a means to allow the snakes to interact - so that a
node of one snake which is at the global minimum can
draw nodes of other snakes away from local minimums -
and consequently force the snakes to converge to a common
location, we designed the attractive energy Eatt

Eatt (φτ ) = Rnmin
(φτ )− Rnmax

(φτ ) (18)

nmin (φτ ) = argmin
n

(Rn (φτ ))

nmax (φτ ) = argmax
n

(Rn (φτ )).

Eatt is minimized in each ray by driving the nodes from
the different snakes on that ray towards the center of the
node range, Rmid (φτ ) = 1

2 (Rnmin
(φτ ) + Rnmax

(φτ )), us-
ing Uatt,n = Rmid − Rn.

Snake Update

Given the described energies which evolve the individual
snakes, and the methods designed to minimize the energies,
the snakes update according to

Rn,t+1=Rn,t+dt (ωdrvUdrv,n+ωxyUxy,n+ωzUz,n+ωattUatt,n)
(19)

where Rn,t+1 is the updated snake, Rn,t is the current snake,
and dt is a time step. The snakes are updated until they
stabilize to within 0.1 pixels, which occurs in roughly 100
iterations using the parameter values shown in Table I.

H. 3D Mitral Annulus Contour

The three-dimensional annulus is constructed from the final
snake by computing the x′ and y′ coordinates using the
angle of the rays and radial location of the nodes, and the
z′ coordinates using Zn. We compute a continuous annulus
contour in <3 using a cubic interpolation of the defined points.

I. Algorithm Convergence

The point xc which initially positions and orients the graph
used to find MVsurf is provided initially by a user who
is asked to provide a point near the center of the valve.
Therefore, the location of the user-specified point could have
an effect on the shape of the 3D annulus contour. However,
this dependency is resolved by iterating the algorithm until
convergence metrics are satisfied (Fig. 9).

After the first execution of the algorithm, and in subse-
quent iterations, the center point of the resulting 3D annu-
lus contour, xc,new, is compared to the location of xc. If

User-
Specified

Point

Algorithm
Input
(xc)

Mitral
Valve
Plane

Mitral
Leaflet
Surface

Projected
Mitral

Annulus

3D
Mitral

Annulus

Annulus
Center

(xc,new)

Iterate Until
Convergence

Fig. 9. Simplified flow chart for the mitral annulus segmentation algorithm;
the algorithm iterates until the computed annulus center stops changing.
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|xc,new − xc| > ε, where ε is a pre-defined scalar distance, xc
is set equal to xc,new and the algorithm iterates. Otherwise, it is
assumed the annulus contour has been accurately segmented.
Enforcing this convergence means the resulting annulus seg-
mentation is independent of the initial user-provided point,
making the algorithm’s results operator-independent. Section
III-C shows that a relatively large region of convergence exists.

III. VALIDATION

To determine the appropriateness of the algorithm for di-
agnostic applications, we assessed the algorithm’s abilities to
accurately locate the mitral annulus in 3DUS compared to a
group of experts (Sec. III-A). For surgical planning purposes,
we compared the algorithm’s results to the appearance of the
mitral annulus as seen in a surgical view (Sec. III-B). We
also explored the sensitivity of the algorithm to the initial
user-specified point which serves as the algorithm’s input
(Sec. III-C).

It is important to note that in these studies, the same
parameter values (Table I) were used for every valve and every
study. These parameters were found by testing the algorithm
on 11 clinical images, none of which were included in the
validation studies. The clinical images contained both normal
and diseased mitral valves (3 normal, 4 with mitral prolapse,
and 4 with mitral regurgitation). Of the 11 images, 10 were
acquired with a transesophageal approach (X7-2t probe), and
one with a transthoracic approach (X7-2 probe).

The algorithm was coded mostly in MATLAB (The Math-
Works, Natick, MA, USA), but used C++ for both computing
Φ in the TTD, and for the implementation of the max-flow
algorithm. Approximate running times for various portions of
the algorithm (64-bit PC, 3.0 GHz Intel Core 2 Duo processor
with 4GB of RAM) were 30 seconds to compute the TTD,
30 seconds to compute the mitral leaflet surface, and 15
seconds to subsequently initialize and converge the contours,
meaning each iteration took roughly 45 seconds. Typically two
iterations were needed for convergence.

TABLE I
MITRAL ANNULUS SEGMENTATION ALGORITHM PARAMETERS USED FOR

ALL STUDIED VALVES

Parameter Value Units Parameter Value Units
σ 1 mm αc 25
p 3 voxels m 2

rpca 12.5 mm σn=1 2.5 mm
rgraph 25 mm σn=2 1 mm
ωp 1.5 ∆φ 10 degrees
ωo 1 σs 1 mm
αs 25 dt 0.2
∆γ 5 degrees ωdrv 2
∆r 0.5 mm ωxy 2
λint 5 ωz 0.2
λttd 1 ωatt 1
ωs 25 ε 0.5 mm
ωd 1

A. Validation Study Using Manual Image Delineations

Noise in 3DUS and volume visualization limitations make
delineating the annulus from 3DUS difficult. As a result, a
ground truth segmentation of the annulus cannot be defined
from images. Therefore, to validate the annulus segmentation

TABLE II
SUMMARY OF CLINICAL MITRAL VALVE IMAGES USED IN MANUAL

IMAGE DELINEATION VALIDATION STUDY

Valve Mitral Valve State Acquisition Type Probe
1 Prolapse; Regurgitation Transesophageal X7-2t
2 Normal Transesophageal X7-2t
3 Normal Transthoracic X7-2
4 Normal Transesophageal X7-2t
5 Cleft Mitral Transesophageal X7-2t
6 Prolapse; Dilated Annulus Transesophageal X7-2t
7 Prolapse; Myxomatous Valve Transesophageal X7-2t
8 Prolapse; Regurgitation Transesophageal X7-2t
9 Normal Transesophageal X7-2t
10 Prolapse Transthoracic X7-2

algorithm, we compared the algorithmic annulus to manual
segmentations of the annulus performed by a group (n = 10)
of cardiologists and trained echocardiography technicians, who
will be collectively referred to as experts. We performed the
analysis by first comparing the segmentations made by each
expert to the collection of segmentations made by the rest
of the experts for each valve. In this way, a measure of the
performance for each expert could be quantified. We then
compared the algorithm segmentations to the collection of
segmentations made by the entire group of experts for each
valve.

Experts were provided with 3DUS images of 10 different
closed valves. The state of the valve and the nature of the
3DUS acquisition for each valve is summarized in Table II.
The images were slices at 10o increments about a mitral valve
center point and axis. We asked the experts to delineate the
two annulus points in each image of the valve, for a total of
36 annulus points per valve. While the segmentations were
performed in a single frame, temporal information in each
image was available to the experts to allow them to accurately
delineate the location of the annulus. To reduce the effects of
training and fatigue in the analysis, we presented the valves
to the experts in random order.

The comparison of an expert to other experts, or the
algorithm to the group of experts, was done on a point-by-
point basis. As some annulus points were better defined than
others, it was appropriate to penalize more for deviations of
a point from a well-defined annulus location than from a

Fig. 10. Typical comparison between the algorithmic annulus (solid line)
and points delineated manually by experts on clinical 3DUS images
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TABLE III
MEAN NORMALIZED DISTANCES & DISTRIBUTION PARAMETERS FOR THE EXPERTS AND ALGORITHM

Valve Mean ±
Expert 1 2 3 4 5 6 7 8 9 10 Std. Dev.

1 1.23 1.19 1.06 1.04 1.16 1.74 1.07 0.94 1.28 1.00
2 1.19 1.31 1.98 1.32 1.64 1.82 1.02 1.46 1.38 2.63
3 2.68 1.50 1.69 2.68 1.92 1.62 2.71 2.61 1.85 3.80
4 2.19 1.74 3.05 0.83 1.56 2.03 2.32 1.02 1.09 0.86
5 1.50 1.09 1.39 1.25 1.21 0.99 1.10 0.91 1.94 0.92 1.63±0.76
6 1.03 1.79 1.19 0.88 1.65 1.10 0.96 0.95 0.81 0.93
7 1.03 1.15 1.07 1.14 1.33 1.08 1.69 0.94 1.42 1.26
8 1.15 1.71 1.25 1.18 1.51 0.96 1.19 2.31 2.36 1.13
9 1.44 1.73 1.40 4.16 1.01 1.23 1.49 1.36 1.34 0.98
10 2.70 2.97 1.92 2.00 2.97 4.33 2.81 3.66 2.46 2.92

Algorithm 1.19 0.97 1.42 0.97 1.15 1.13 1.28 1.03 1.19 0.73 1.11±0.19

poorly-defined location. The measure of a well-defined and
poorly-defined annulus location was based on the collection of
segmentations to which a particular segmentation was being
compared. Additionally, as the experts could only provide
points in the space of the image, points did not deviate out of
the image plane. Therefore, the analysis of points was done
in <2 space.

When comparing an expert’s segmentation to the collection
of segmentations made by the remaining experts, we refer
to the ith point of the expert’s segmentation as Ai, where
i ∈ {1, ..., 36}. The mean and covariance of the ith point
as determined from the segmentations from the rest of the
group are referred to as Ai and Σi, respectively. A normalized
(Mahalanobis) distance was then computed for each Ai, and
the performance of an expert quantified as

MND =
1
36

36∑
i=1

√(
Ai − Ai

)T
Σ−1
i

(
Ai − Ai

)
(20)

which is the mean normalized distance (MND) across all points
for a valve.

We then analyzed the algorithm results in much the same
way we analyzed the segmentations from each expert, where
the ith point of the algorithm’s segmentation was Ai, and Ai
and Σi were the mean and covariance, respectively, of the ith

point from the entire group of experts. The MND computation
for the algorithm was then the same as shown in (20).

A typical comparison between the algorithm’s resulting
annulus and the points manually delineated by the experts
can be seen in Fig. 10. Table III shows the MND values for
each expert and for the algorithm across all valves, along
with the sample mean and standard deviation of the MND
values from each group. Based on the distribution param-
eters of the two groups, we concluded that the algorithm
(MND= 1.11± 0.19) had a lower mean MND than the group
of clinicians (MND= 1.63 ± 0.76), and that this difference
was statistically significant (p < 0.001). If instead of looking
at the group, we look at the best scoring expert (Expert 6:
MND= 1.13±0.33), we found that the algorithm and the best
scoring expert were statistically indistinguishable (p = 0.85).

We also compared the algorithm and experts by computing
the RMS difference between the algorithm and the expert
average (Table IV), as this is a commonly used accuracy metric
and allows for comparisons to be drawn to other studies and
methods. The average RMS difference between the algorithm

TABLE IV
RMS DIFFERENCE BETWEEN THE ALGORITHMIC ANNULUS AND

MANUAL DELINEATIONS MADE BY EXPERTS ON CLINICAL IMAGES

Valve RMS Difference (mm)
1 1.95
2 1.37
3 2.75
4 0.96
5 1.19
6 2.50
7 3.22
8 1.82
9 1.27
10 1.09

Mean±Std. Dev. 1.81±0.78

and the expert average was 1.81± 0.78mm. The larger RMS
differences usually coincided with a disagreement among the
experts as to the annulus location (i.e. a large spread of experts’
annular points), which could typically be attributed to poor
image quality.

B. Validation Study Using Surgical View Delineations

Given the poor image quality of 3DUS, validating the
algorithm by comparing the algorithm’s annulus to manual
delineations made in 3DUS only answered the question of
whether the algorithm was interpreting the images in the same
way as a group of experts. The conclusion could not be made,
however, that the annulus was understood to be the same shape
as seen in a surgical view. Therefore, we further validated the
algorithm by comparing the algorithm results to a fully visible
mitral annulus delineated by a pointing device tracked using
an electromagnetic (EM) tracker (miniBIRD - Model 800,
Ascension Technology Corporation, Burlington, VT, USA).

We performed this validation study using six freshly excised
porcine hearts. We removed the left atrium to fully expose the
mitral annulus, and to inhibit motion, secured the heart to a
plastic frame using suture. After securing the heart in a water
tank, to roughly simulate a peak systolic state, we artificially
distended the left ventricle by connecting the aorta to a tube
from a container of water elevated about two meters above
the heart, and by closing the coronary arteries using suture
(Fig. 11). An expert acquired a 3DUS volume of the loaded
mitral valve with a transthoracic probe, and shortly after, used
an EM tracked pointing device to delineate the fully visible
mitral annulus with about 30 evenly placed points. Taking into
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Fig. 11. Typical view of a loaded mitral valve in a water tank that was used
in the surgical view delineation study.

account the sensor resolution and calibration procedure, point
locations were computed to within a measured accuracy of
0.21 mm.

We segmented the annulus from the acquired 3DUS volume
using the semi-automatic algorithm, and registered the EM
delineated points to the algorithmic annulus by first manually
aligning the two segmentations and then using an iterative-
closest-point algorithm to refine the alignment. The RMS dif-
ferences between the two can be seen in Table V, with Fig. 12
showing a typical comparison. The average RMS distance of
the EM delineated annulus from the algorithmic annulus was
1.19±0.17mm, where we computed the standard deviation of
the RMS distance from three different EM delineations of the
annulus made by the expert on each mitral valve.

TABLE V
RMS DIFFERENCE BETWEEN THE ALGORITHMIC AND EM DELINEATED

ANNULUS FROM FRESHLY EXCISED PORCINE HEARTS

RMS Difference (mm)
Valve (average ± std. dev.)

1 1.15 ± 0.04
2 1.35 ± 0.18
3 1.42 ± 0.01
4 1.38 ± 0.12
5 0.95 ± 0.42
6 0.91 ± 0.26

Mean 1.19 ± 0.17

Fig. 12. Typical comparison between the algorithmic annulus (solid line)
and points delineated by an expert on a porcine mitral annulus using an EM
tracked device.

TABLE VI
ESTIMATED REGION OF CONVERGENCE DIMENSIONS FOR EACH VALVE

NORMALIZED BY THE ANNULAR RADIUS

Valve Axial Radial
1 0.96 1.34
2 0.44 0.65
3 0.76 1.13
4 1.24 1.08
5 0.72 1.11
6 0.71 0.98
7 0.96 1.16
8 0.78 0.68
9 1.26 1.17

10 0.67 1.26
Mean ± Std. Dev. 0.85 ± 0.26 1.06 ± 0.23

1
-

6
Test
Point

Baseline
Annulus

Segmentation

Estimated Region
of Convergence

Radial

Axial

Fig. 13. Estimated shape and size of the region of convergence relative to
a baseline segmentation and described using the axial and radial directions

C. Sensitivity Study

Just as important as the algorithm’s accuracy is the accuracy
needed for the algorithm’s input, which is the user-specified
point. For this study, we first established a baseline segmenta-
tion for each valve, i.e. the algorithm’s segmentation resulting
from a carefully placed user-specified point near the center
of the valve. The algorithm was then run on test points that
were placed in the region around the center point, where we
determined the center point from the baseline segmentation.
If we refer to a segmentation resulting from a test point as
a test annulus, then a test annulus was said to converge to
the baseline if all points from the test annulus were less than
0.5 millimeters away from the baseline. The 3DUS images
used in this study were the same as those used in the imaging
validation study described in Section III-A.

Based on the test points that resulted in the algorithm
converging to the baseline, we could then establish a region of
convergence. To describe the region of convergence in general
terms, we refer to two directions – an axial direction, which
is an estimation of the mitral valve axis from the baseline
segmentation, and a radial direction, which is any direction
perpendicular to the axis extending out from the center point
towards the annulus. We represent the location of all test
points relative to these axes, and normalize the coordinates
by the radius of the baseline annulus in the plane defined by
the axis and the test point. We then approximate the region
of convergence as the ellipsoidal region shown in Fig. 13.
Table VI shows the results of the sensitivity study, where it can
be seen that the region of convergence extends to an average
of 85% of the annulus radius in the axial direction and 106%
of the annulus radius in the radial direction.
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IV. DISCUSSION

A. Performance and Validation

In both validation studies, the mitral annulus segmenta-
tion algorithm accurately and robustly segmented the three-
dimensional mitral annulus contour from 3DUS. When com-
paring the algorithm to a group of experts, results showed
that the algorithm consistently segmented the annulus near the
location selected by the experts (Table III). The consistency
of the algorithm was better than the group of experts, i.e.
while the algorithm might not have the lowest MND values for
each valve, across all valves, the algorithm had a lower mean
MND than the group of clinicians (p < 0.001). Additionally,
the algorithm and the best scoring expert were statistically
indistinguishable (p = 0.85). We also analyzed the expert
segmentations by computing the RMS difference between
the algorithm and the expert average, in which we found
an average RMS difference of 1.81 ± 0.78mm. Lastly, we
compared the computed annulus shape to a fully exposed
porcine annulus delineated using an EM tracked pointer.
Results showed an average RMS difference of 1.19±0.17mm
between the algorithm and the delineated points. This smaller
RMS difference, compared to the validation study using the
group of experts, is due to the fact that the true annulus could
be seen. In contrast, the group of experts could only use 3DUS
images to interpret the annulus location. Consequently, when
image quality was poor, there was typically a lack of consensus
as to the annulus location, resulting in a larger RMS difference
between the expert average and the algorithm.

The two validation studies were complimentary. The first
study used actual clinical images, which display the full
range of noise and distortion encountered in medical practice.
Here the performance of the algorithm cannot be compared
to a “gold standard” determination of the annulus location;
instead, the results were compared to the annulus location
determined by a group of practicing clinicians. This approach
is most immediately relevant to diagnostic applications, where
determination of the annulus shape provides insight into
various pathological states [1]–[5]; current clinical practice is
based on the expert segmentations which are the standard for
comparison here.

In the water tank study, the quality of the 3DUS images
is significantly better than in vivo, which may improve algo-
rithm performance compared to clinical images. The annulus
location, however, could be directly designated using visual
inspection and a pointing device, which is likely to produce a
good estimate of the “true” annulus location. This method is
particularly pertinent to surgical planning applications [8], as
the mitral annulus is viewed from a similar perspective during
annuloplasty. While both validation studies have limitations,
the results in combination suggests that the algorithm is able
to estimate annulus location with an accuracy comparable to
current clinical practice.

The sensitivity study suggests that the algorithm is robust
to variation in user input. So long as the user-specified point
is located within about a half-diameter of the valve’s center,
the algorithm converges to the same annulus location. Given
that this point is the only information the algorithm requires

from the user, the results of the semi-automatic annulus
segmentation algorithm are consequently independent of the
user as well. Additionally, despite variation in the states and
degrees of pathology of the mitral valves, the probe orientation
relative to the valve, and the ultrasound machine settings, the
algorithm accurately segmented the annulus using the same
algorithm parameter values for every image, reinforcing the
robustness of the method.

The measured accuracy of this algorithm is difficult to
compare to prior work, as previously published semi-automatic
mitral annulus segmentation algorithms include minimal val-
idation [25], [26]. In [26], indirect quantitative analysis of
the method was performed by comparing measurements from
a model to published population valve dimensions. As an
example, for average annulus diameter dimensions, the method
reported errors of roughly 15%. We measured the annuli from
our algorithm and the EM delineations discussed in III-B and
found an average diameter difference of under 4%.

B. Algorithm Design

The algorithm uses a thin tissue detector which can be
likened to a simplified three dimensional ridge detector [36]
for determining the valve orientation, computing the mitral
leaflet surface, and finding the location of the projected mitral
annulus contour. This is a key reason the algorithm is suc-
cessful: the only extensive regions of thin tissue in the image
volume are the mitral valve leaflets, so the algorithm focuses
on the mitral apparatus and ignores the rest of the volume.
This generates accurate results despite poor placement of the
user input point.

Characterizing the leaflet location using the thin tissue
detector, however, does place restrictions on the ultrasound
imaging, in that the thin leaflet tissue needs to be visi-
ble (Fig. 14(a)). This is not the case when the ultrasound
wave propagation is parallel to the leaflet surface orientation
(Fig. 14(b) and 14(c)), as this produces little acoustic return.
The algorithm will fail on images such as these. However,
similar restrictions would also exist for the previous work in
annulus segmentation presented in [25] and [26], and is to be
expected for algorithms wishing to delineate the mitral annulus
from a single ultrasound frame and with no use of temporal
information.

With ultrasound imaging, anatomical structures become
more or less defined depending on their orientation to the
acoustic propagation (Fig. 14). This helps to explain why the
presented method cannot be used to find the annulus through-
out the cardiac cycle, but rather was designed for just closed
valves. For instance, if the probe orientation such as that shown
in Fig. 14(a) was used to view the mitral valve throughout
the cardiac cycle, when the valve opens (Fig. 14(b)), the
leaflets become oriented such that they become poorly defined.
Additionally, when the valve opens, the leaflets can become
difficult to distinguish from the left ventricle wall that they are
pushed against.

The graph cut method (max-flow algorithm) is used in the
annulus segmentation algorithm first in a 3D graph to find
a surface at the location of the mitral leaflets, and then in a
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Fig. 14. Mitral valve leaflet appearance of the same valve in several scenarios.
(a) Closed mitral valve in a long-axis view (LA - left atrium; LV - left
ventricle). Leaflet surface is well defined. Dashed red lines are the approximate
border of the LV. (b) Open mitral valve in a long-axis view. Leaflets are poorly
defined. (c) Closed mitral valve in a short-axis view shown with the border
taken from (a). Leaflet surface is poorly defined and chordae insertions are
visible.

2D graph to find a contour at the location of the projected
mitral annulus in the projection images. There are several
reasons why we use the graph cut method. One of the main
reasons is the fact that it finds an optimal solution to an energy
minimization problem, meaning we will not fall victim to the
local minima that many methods are subject to which attempt
to find an optimal surface or contour (i.e. active contours [31],
level sets [32], etc.). This is especially important in cardiac
ultrasound, where anatomic variation along with the noise,
artifacts, and inhomogeneities inherent in ultrasound imaging
have the potential to create several local minima. Other reasons
to use the graph cut method are that it does not require an
initialization, and a limited amount of prior knowledge can be
enforced through mindful construction of the graph. Therefore,
the need for additional user input, for either initialization
or to encourage a specific geometry, is eliminated without
sacrificing accuracy, and we avoid the variation inherent in any
additional user inputs. The combination of these characteristics
of the graph cut method helps to make the annulus segmen-
tation algorithm accurate, and also helps to explain why the
algorithm has such a large region of convergence relative to
the user-provided point.

The annulus segmentation algorithm can be simplified to
two main steps: find the leaflets, then search along the leaflets
to find the annulus. This was consistent with the approach
used by the experts (cardiologists and technicians) to delineate
the annulus. Fig. 15 shows an example of the distribution of
the human selected annular points which are aligned along the
leaflets. The main difference was that after finding the leaflets,
the human observers had access to temporal information to
delineate the annulus location, whereas the algorithm used
only a single 3DUS volume.

C. Future Work

One of the most significant improvements to the algorithm
would be to integrate temporal information to more accurately
and robustly locate the annulus. Currently, the algorithm finds
the annulus as the location at the leaflets where the tissue
thickness changes abruptly along the computed leaflet surface.
A drawback of this approach, however, is that if the TTD
is improperly tuned or if the leaflets are severely calcified,
the annulus might not be accurately located, which might be
ameliorated when temporal information is used.

The large region of convergence for the algorithm makes
it an attractive candidate for complete automation. Because
the only input to the algorithm is the user-specified point,
if this point can be delineated by some automated process,
the annulus segmentation algorithm could be made fully
automatic. Special care would need to be taken, however, to
account for the different appearances of valves due to varying
pathologies, ultrasound probe orientations, and ultrasound
machine settings. An example of a method that could be used
for this automatic selection is the work presented in [37],
which automatically segments the mitral valve plane and left
ventricular long-axis. The intersection of the plane and the
axis could be used to define the user-specified point.

The annulus segmentation algorithm presents many oppor-
tunities in clinical studies. The algorithm can help to ana-
lyze large clinical databases to explore correlations between
pathologies and annular geometries. It can also be used to
monitor patient anatomy over time to determine if geometry
at an earlier age has any indication as to pathologies that may
develop at later ages.

To build on this algorithm, future work will also include
segmentation and/or tracking of the annulus over the duration
of the cardiac cycle. However, given that the algorithm can
segment the mitral annulus whenever the leaflets are coapted,
the shape and motion of the annulus throughout most of the
cardiac cycle can already be obtained from the present method.

Left Atrium

Left Ventricle

Fig. 15. Slice from 3DUS of the mitral valve used in the manual segmentation
study showing typical distributions of the annulus points selected by the
experts. The first standard deviation (solid line) and second standard deviation
(dotted line) are shown. The red point is the location of the algorithm-
generated annulus in the slice. This suggests that human observers, much
like the algorithm, select annulus points along the leaflet structure.
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V. CONCLUSION

The annulus segmentation algorithm accurately and robustly
segments the mitral annulus from a 3DUS frame using only
a single user specified point. The approach first uses a thin
tissue detector to localize the mitral leaflets, and then the
graph cut algorithm to define the leaflet surface. The annulus
is detected as the curve where the thin leaflet surface meets
the thick heart wall using another graph cut implementation
and multiscale active contours. Validation using clinical 3DUS
images showed that estimated annulus positions were com-
parable to expert manual segmentation. A second validation
study showed that the algorithm matched annulus delineations
made by an expert using an EM tracked pointing device,
with an RMS error of 1.19± 0.17mm across six valves. The
algorithm is insensitive to the placement of the user-specified
point within about half of the valve radius, and a single set
of parameters was used for all valve images, with no fine-
tuning required. The algorithm can be used to increase speed
and consistency in determining annulus location for diagnostic,
surgical planning, and database applications.
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