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Summary. Material indentation studies, in which a probe is brought into controlled physical
contact with an experimental sample, have long been a primary means by which scientists
characterize the mechanical properties of materials. More recently, the advent of atomic force
microscopy, which operates on the same fundamental principle, has in turn revolutionized the
nanoscale analysis of soft biomaterials such as cells and tissues. The paper addresses the
inferential problems that are associated with material indentation and atomic force microscopy,
through a framework for the change-point analysis of pre-contact and post-contact data that is
applicable to experiments across a variety of physical scales. A hierarchical Bayesian model
is proposed to account for experimentally observed change-point smoothness constraints and
measurement error variability, with efficient Monte Carlo methods developed and employed to
realize inference via posterior sampling for parameters such as Young’s modulus, which is a
key quantifier of material stiffness. These results are the first to provide the materials science
community with rigorous inference procedures and quantification of uncertainty, via optimized
and fully automated high throughput algorithms, implemented as the publicly available soft-
ware package BayesCP. To demonstrate the consistent accuracy and wide applicability of this
approach, results are shown for a variety of data sets from both macromaterials and microma-
terials experiments—including silicone, neurons and red blood cells—conducted by the authors
and others.

Keywords: Change-point detection; Constrained switching regressions; Hierarchical Bayesian
models; Indentation testing; Markov chain Monte Carlo methods; Materials science;Young’s
modulus

1. Introduction

This paper develops a hierarchical Bayesian approach for contact point determination in mate-
rial indentation studies and atomic force microscopy (AFM). Contemporary applications in
materials science and biomechanics range from analysing the response of novel nanomaterials
to deformation (Wong et al., 1997) to characterizing disease through mechanical properties of
cells, tissues and organs (Costa, 2004). Experimental procedures and analyses, however, remain
broadly similar across these different types of material and physical scales (Gouldstone et al.,
2007), with the scientific aim in all cases being to characterize how a given material sample
deforms in response to the application of an external force.

As illustrated in Fig. 1, indentation experiments employ a probe (or cantilever arm, in the case
of AFM) to apply a controlled force to the material sample. This indenting probe displaces the
sample while concurrently measuring resistive force, with the resultant force–position data used
to infer material properties such as stiffness (by analogy with compressing a spring to determine
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Fig. 1. Diagram of a macroscale indentation experiment in which a spherical probe, attached to a force
sensor, indents a material sample and deforms it by a distance δ: in this hypothetical example, a net change
of 1.2 N in resistive force is consequently observed

its spring constant experimentally). Before subsequent data analysis, a key technical problem
is to determine precisely the moment at which the probe comes into contact with the material.
Sample preparation techniques and sizes frequently preclude the direct measurement of this
contact point, and hence its inference from indenter force–position data forms the subject of
this paper.

At present, practitioners across fields lack an agreed standard for contact point determination;
a variety of ad hoc data preprocessing methods are used, including even simple visual inspection
(Lin et al., 2007a). Nevertheless, it is well recognized that precise contact point determination
is necessary to infer material properties accurately in AFM indentation experiments (Crick and
Yin, 2007). For example, Dimitriadis et al. (2002) showed that, for small displacements of thin
films, estimation errors of the order of 5 nm for a 2.7-μm sample can cause an increase of nearly
200% in the estimated Young’s modulus—the principal quantifier of material stiffness. When
soft materials such as cells are studied at microscopic scales, e.g. to determine biomechanical
disease markers (Costa, 2004), the need for robust and repeatable AFM analyses becomes even
greater (Lin et al., 2007a).

In this paper, we present the first formulation of the contact point determination task as a
statistical change-point problem, and we subsequently employ a switching regressions model
to infer Young’s modulus. Section 2 summarizes the basic principles of material indentation,
showing that the resultant force–displacement curves are often well described by low order poly-
nomials. Section 3 introduces a corresponding family of Bayesian models designed to address a
wide range of experimental conditions, with specialized Markov chain Monte Carlo samplers
for inference developed in Section 4. Following validation of the proposed inference procedures
in Section 5, they are employed in Section 6 to infer material properties of mouse neurons and
human red blood cells from AFM force–position data. The paper concludes in Section 7 with
a discussion of promising methodological and practical extensions.

2. Material indentation

2.1. Indentation experiments and data
Indentation experiments proceed by carefully moving a probe from an initial non-contact
position into a material sample, as shown in Fig. 1, while measuring the resistive force at some
prescribed temporal sampling rate. After a small deformation has been made, the probe retracts
to its initial position; during this stage the resistive force decreases with every subsequent
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Fig. 2. Example of force–position curves for (a) the silicone and (b) the red blood cell indentation data, which
frommaterialstiffnesspropertiesaretobeinferred,withforcemeasurementsduringindentationandsubsequent
retraction shown in black and grey respectively and subsets of the indentation data shown near the presumed
contact points: experiments were performed by using a mechanical arm for the soft silicone sample and an
atomic force microscope for the red blood cell sample;note the differences in physical scale and level of noise

measurement. At the conclusion of each such experiment, two force–position curves are pro-
duced, examples of which are shown in Fig. 2. In this paper we consider only the forward
indentation curves, as is standard practice (Lin et al., 2007a), though the methods that we
present are extendable to retraction data whenever suitable models are available.

Despite significant differences in physical scale and noise level, the curves in Fig. 2 (and,
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indeed, most indentation data sets) feature several common characteristics. In the precontact
region, the force response appears linear in the position of the indenter; drift due to experimental
conditions is often present, yielding a non-zero slope as in Fig. 2(a). The post-contact data
appear well modelled by low order polynomial functions of the corresponding displacement
and, indeed, the key assumption of such experiments is that, conditioned on knowledge of the
geometry of the indenting probe, the relationship between the degree of material deformation
and the measured resistive force depends in a known way on the stiffness of the material. This is
analogous to the case in which an ideal spring is compressed a specified distance δ by a force of
known magnitude; a measure of the spring’s stiffness is given by the spring constant k, which
may be calculated by using Hooke’s law: F =−kδ.

2.2. Contact mechanics and the Hertzian model
Indentation data such as those shown in Fig. 2 are typically acquired for linear elastic materials.
This implies, not only that the material instantaneously returns to its original shape following the
cessation of an external force, but also that the relationship between the applied stress (the force
per unit area) and the resultant strain (the deformation per unit length) is linear. This ratio is
known as Young’s modulus—the primary quantifier of material stiffness introduced above—and
is reported in units of pascals.

In small deformation experiments to infer Young’s modulus E for linear elastic materials,
both the indenter geometry and the measured resistive force come into play, by way of the
so-called Hertzian model (Lin et al., 2007a). Specifically, the relationship between the sample
deformation depth δ and the measured resistive force F takes the form

F ∝Eδβ , .1/

where the constant of proportionality and the fixed parameter β depend on the geometry of
the indenter tip in a known way. Examples include indentation by a sharp pyramid with tip
angle 2φ or a sphere of radius R, whereupon expression (1) respectively takes the following
forms:

F = 1:5 tan.φ/

2.1−ν2/
Eδ2,

F = 4R1=2

3.1−ν2/
Eδ3=2,

.2/

with ν a known dimensionless quantity termed Poisson’s ratio. A subsequent fitting of the
Hertzian model (1) to experimental data thus allows us to obtain an estimate for Young’s
modulus E once the post-contact region has been identified. (Below we retain the standard
practitioner notation .E, F , R, δ, ν, φ/, as distinct from other variables to follow.)

2.3. Precontact and post-contact data regimes
Observe that the Hertzian model (1) posits a relationship between force and indentation depth,
whereas the data of Fig. 2 are seen to be a function of the position of the indenter. The Hertzian
model thus describes the underlying physics of the post-contact stage of a typical indentation
experiment, whereas the measured data also comprise a precontact stage. As we detail below,
the union of these two regimes is well described by a switching regressions scenario, with force
measurements before contact typically linear in the position of the probe. The corresponding
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intercept represents the equilibrium tare that is required to achieve zero net force, whereas
the slope captures constant velocity drift in force measurements that can arise in a variety of
experimental settings.

In both the precontact and the post-contact data regimes, it is standard to assume inde-
pendence of measurement errors—a reasonable assumption for all practically achievable force
sampling rates. Errors before contact arise because of force sensor vibration in the experi-
mental medium, thermal variations and other effects—whereas after contact they also depend
on interactions between the probe and the sample such as frictional forces. Consequently,
although error variances in these regimes can be expected to differ in practice (analysis of
AFM data from a red blood cell, which is shown in Fig. 6 and described later, reveals one
such example), their relative magnitudes are not known a priori. As a final consideration,
uncertainty in the reported position of the indenting probe is typically several orders of magni-
tude smaller than the distance between consecutive force sampling points and can safely be
disregarded.

As noted by Crick and Yin (2007), all the sources of variability that were mentioned above
can lead to large relative errors in resistive force measurements near the contact point; Fig. 2(b)
illustrates a typical scenario. This makes manual identification of the contact point difficult in
many cases and motivates the model-based approach that we now describe.

3. Bayesian change-point model

Having outlined the basic principles of material indentation, we now formulate a Bayesian model
for force–position data that encompasses both precontact and post-contact regimes. In light of
the discussion above, the corresponding task of contact point determination is recognizable as a
change-point estimation problem in the context of switching regressions. In turn, the Hertzian
model (1) implies that an estimate of Young’s modulus can be obtained as a linear function of
the leading post-contact regression coefficient. Control over experimental conditions implies
that each indentation data set contains precisely one change-point, thus obviating any need to
estimate the presence or number of contact points.

During an indentation experiment, the indenter moves continuously through a sequence of n
equispaced positions x= .x1, x2, . . . , xn/′ and records a force measurement yi at each position xi,
resulting in a sequence of force measurements y= .y1, y2, . . . , yn/′. As we shall later treat models
for soft material indentation, in which the precontact and post-contact curves are constrained to
be continuous at the regression change-point, we begin by introducing a continuous parameter
γ ∈ .1, n/ denoting the contact point index, with the corresponding contact point at which the
indenter first contacts the sample denoted by xγ ∈ .x1, xn/.

3.1. Data likelihood for indentation experiments
We adopt a classical switching regressions scenario for our model, in which y is assumed to be
a polynomial function of known degree d1 in position x before contact, and of known degree
d2 in deformation depth δ = x − xγ after contact with the sample is made. This formulation
encompasses the Hertzian model (1) if fractional powers are allowed; however, for clarity of
presentation we consider d2 to be an integer unless otherwise noted. Letting p = d1 + d2 + 2
denote the number of regression coefficients in our model, and with n the number of data
points, the corresponding design matrix is hence of dimension n×p. We subsequently employ
the subscript γ to denote any quantity that depends on γ, and index via subscripts 1 and 2 the
precontact and post-contact regression regimes.
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We denote the regression coefficients by β1 ∈Rd1+1 and β2 ∈Rd2+1, with design matrices X1,γ
and X2,γ defined as follows, for �γ� the largest integer less than or equal to γ:

X1,γ =

⎛
⎜⎜⎜⎝

1 x1 · · · x
d1
1

1 x2 . . . x
d1
2

:::
:::

: : :
:::

1 x�γ� · · · x
d1
�γ�

⎞
⎟⎟⎟⎠, X2,γ =

⎛
⎜⎜⎝

1 x�γ�+1 −xγ · · · .x�γ�+1 −xγ/d2

1 x�γ�+2 −xγ . . . .x�γ�+2 −xγ/d2

:::
:::

: : :
:::

1 xn −xγ . . . .xn −xγ/d2

⎞
⎟⎟⎠: .3/

The observed data y may likewise be partitioned into precontact and post-contact vectors

y1,γ = .y1, y2, . . . , y�γ�/′

and

y2,γ = .y�γ�+1, y�γ�+2, . . . , yn/′,

and, following our discussion in Section 2.3 regarding the noise characteristics that are typical
of indentation experiments, we assume independent and normally distributed additive errors,
with unknown variances σ2

1 and σ2
2. Thus, for 1� i�n, we have that yi is distributed as follows:

yi ∼
{N .X1,γβ1, σ2

1/ if 1� i� �γ�,
N .X2,γβ2, σ2

2/ if �γ�+1� i�n.
.4/

The statistical model (4) is consistent with the Hertzian mechanics model (1), resulting in a
post-contact force–response curve that is a power of the displacement δ = x − xγ of the mate-
rial sample, rather than the position x of the indenter. However, when d2 is an integer, the
coefficients of these two polynomials are related by a simple linear transformation. Consider,
for instance, a quadratic curve in δ given by f.δ/ = a0 + a1δ + a2δ

2. We may rewrite f.δ/ as a
quadratic polynomial in x as follows:

a0 +a1.x−xγ/+a2.x−xγ/2 =b0 +b1x+b2x2, .5/

where b2 =a2, b1 =a1 −a2xγ and b0 =a0 −a1xγ +a2x2
γ . This transformation enables X2,γ to be

reformulated directly in terms of indenter position x, such that it no longer depends continu-
ously on xγ , in contrast with expression (3). Transformations akin to equation (5) do not apply,
however, when the d2 is a fraction, as in the case of expression (2) for a spherical indenter, or
when a continuity constraint is enforced at the change-point; we detail such cases below.

3.2. General parametric Bayesian model for material indentation
The likelihood of expression (4), together with the presence of genuine prior information dictated
by the underlying physics of material indentation experiments, suggests a natural hierarchical
Bayesian model. In contrast with the semiconjugate approach that was taken by Carlin et al.
(1992), we detail below a fully conjugate model, as this allows for analytical simplifications that
we have observed to be important in practice. Integrating out nuisance parameters improves not
only the mixing of the chains underlying the resultant algorithms and inferential procedures,
but also their computational tractability when data sizes grow large.

We specify prior distributions for all model parameters, including the contact point index γ ∈
.1, n/, the precontact and post-contact regression coefficientsβ1 andβ2, and the error variances
σ2

1 and σ2
2. For i∈{1, 2}, we then assume that βi ∼N .μi, σ

2
i Λ

−1
i /, with Λi a .di +1/× .di +1/

diagonal positive definite matrix and μi ∈ Rdi+1. A standard inverse gamma conjugate prior
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IG.a0, b0/ is adopted for both variances σ2
1 and σ2

2. Finally, recalling that a single regression
change-point is always assumed within the set of equispaced force–position measurements, we
employ a uniform prior distribution on the interval .1, n/ for the contact point index γ. In certain
experimental settings, whereupon the initial position of the indenter is known to be at least a
certain distance from the sample, an informative prior distribution may be available.

Because of sensitivity to prior parameters, we follow standard practice and adopt hyper-
priors for increased model robustness (see Section 5). A gamma prior is assumed on b0 so that
b0 ∼G.κ, η/; however, we determined from simulations that the posterior estimators considered
were not sensitive to the prior parameters a0, μi and Λi, and so did not employ an additional
level of hyperprior hierarchy for the regression coefficients. For notational convenience, we let
1k denote the 1-vector of dimension k whose entries are all equal to 1 and 0 the zero matrix of
appropriate dimension, and define the variables y, β, μ, Xγ , Λ, Σγ and Σ as follows:

y =
(

y1,γ
y2,γ

)
∈Rn×1,

β=
(
β1
β2

)
∈Rp×1,

μ=
(
μ1
μ2

)
∈Rp×1,

Xγ =
(

X1,γ 0
0 X2,γ

)
∈Rn×p,

Λ=
(

Λ1 0
0 Λ2

)
∈Rp×p,

Σγ =diag.σ2
11�γ�, σ2

21n−�γ�/∈Rn×n,

Σ=diag.σ2
11d1+1, σ2

21d2+1/∈Rp×p:

The posterior probability distribution of the model parameters .γ,β, σ2
1, σ2

2, b0/, conditioned
on the observations y and the fixed model parameters ψ=Δ.μ,Λ, a0, κ, η/, is then

p.γ,β, σ2
1, σ2

2, b0|y;ψ/∝p.y|β, σ2
1, σ2

2, γ/p.β|σ2
1, σ2

2;μ,Λ/p.σ2
1 |b0; a0/p.σ2

2 |b0; a0/

×p.b0;κ, η/p.γ/

∝σ
−2.a0−1/
1 exp.−b0=σ2

1/σ
−2.a0−1/
2 exp.−b0=σ2

2/bκ−1
0 exp.−b0=η/

× .|Σγ ||Σ|/−1=2 exp[− 1
2{.y −Xγβ/′Σ−1

γ .y −Xγβ/

+ .β−μ/′Σ−1Λ.β−μ/}]: .6/

To confirm robustness, we also studied the effect of replacing the diagonal prior covariance
Λ for the precontact and post-contact regression coefficients β1 and β2 with an appropriately
adapted g-prior (Zellner, 1986) such that

βi|ρi, γ ∼N{μi, σ
2
i ρ

2
i .X′

i,γXi,γ/−1},

with ρ2
i a scale parameter to which we ascribed a diffuse inverse gamma hyperprior. We observed

no measurable effect of this change in priors on the resulting inference—further confirming the
insensitivity of the adopted model to the prior covariance of the regression coefficients. More-
over, efficient sampling from the conditional distribution of ρ2

i is precluded by its dependence
on the contact point index γ, reducing the overall efficacy of this approach in the Markov chain
Monte Carlo approaches to posterior sampling that are described in Section 4.
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3.3. Smoothness constraints at the change-point
Often force–position curves are continuous at the contact point xγ . Especially for soft materials
such as the red blood cells that we consider in Section 6, it is to be expected that the change in the
force measurement is smooth, and a continuity constraint can serve to regularize the solution in
cases where many different fits will have high likelihood. Imposing smoothness constraints dates
back to at least Hudson (1966), who considered this constraint in deriving maximum likelihood
estimators for switching regressions. More recently, Stephens (1994) used it in a hierarchical
Bayesian setting.

In our setting, according to the likelihood of expression (4), a continuity constraint on the
precontact and post-contact force–position curves at x=xγ implies that

β10 +β11xγ + . . . +β1d1xd1
γ =β20, .7/

where β1 = .β10, β11, . . . , β1d1/′ and β2 = .β20, β21, . . . , β2d2/′ denote the vectors of precontact
and post-contact regression coefficients respectively. Higher order smoothness can also be im-
posed: we say that the force–position curve is s times continuously differentiable at xγ if the
sth-order derivatives of the precontact and post-contact curves meet at xγ , with equation (7)
corresponding to the case s=0. However, if X2,γ were a function of the position x, rather than
the displacement x−xγ , then the continuity constraint would become

d1∑
i=0

β1ix
i
γ =

d2∑
j=0

β2jxj
γ : .8/

Either continuity constraint implies that the likelihood function is non-linear in the contact
point xγ ; enforcing more degrees of smoothness at the change-point serves to exacerbate the
non-linearity and makes the design of efficient inference methods increasingly difficult. Stephens
(1994) imposed equation (8) in a Bayesian switching regressions setting and proposed a rejection
sampling step within a Gibbs sampler to address the resultant non-linearity. Later, in Section 4,
we describe a more efficient approach that can be applied when either equation (7) or (8) (or
higher order analogues) are enforced.

3.4. Change-point estimation and contact point determination in the literature
As demonstrated above, inference for material indentation data is well matched to classical sta-
tistical frameworks for change-point estimation. Independently of the specifics of our contact
point problem, the last half-century has seen a vast body of work in this area. Sequential and
fixed sample size varieties have been considered from both classical and Bayesian viewpoints,
with numerous parametric and non-parametric approaches proposed. We refer the interested
reader to several excellent surveys, including those by Hinkley et al. (1980), Zacks (1983), Wolfe
and Schechtman (1984), Carlin et al. (1992) and Lai (1995). Some of the earliest work on maxi-
mum likelihood estimation of a single change-point between two polynomial regimes was done
by Quandt (1958) and Robison (1964).

Historically, Chernoff and Zacks (1964) were among the first to consider a parametric Bayes-
ian approach to change-point estimation. Change-points arising specifically in linear models
have been treated by many researchers, including Bacon and Watts (1971), Ferreira (1975), Smith
(1975, 1980), Choy and Broemling (1980), Smith and Cook (1980) and Menzefricke (1981). The
introduction of Markov chain Monte Carlo methods has led to more sophisticated hierarchical
Bayesian models for change-point problems, beginning with the semiconjugate approach that
was taken by Carlin et al. (1992), in which the prior variance of the regression coefficients is left
unscaled by the noise variance. Advances in transdimensional simulation methods have rekindled
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interest in multiple-change-point problems, as discussed by Stephens (1994), Punskaya et al.
(2002) and Fearnhead (2006), among others.

In the context of material indentation, however, existing approaches to contact point deter-
mination do not make use of change-point estimation methodology. In fact, current meth-
ods are error prone and labour intensive—even consisting of visual inspection and manual
thresholding (Lin et al., 2007a). However, as described earlier, the many sources of variability
in indentation data imply that one cannot always simply proceed ‘by eye’. Moreover, in the
context of AFM, most experiments aiming to characterize cell stiffness, for example, employ
multiple repeated indentations at different spatial locations. These requirements have motivated
a more recent desire for effective, high throughput automated techniques, as detailed in Lin
et al. (2007a).

Interpreted in a statistical context, the procedures that have thus far been adopted by prac-
titioners fall under the general category of likelihood fitting. Rotsch et al. (1999) suggested
simply to take two points in the post-contact data and to solve for E and γ by using the appro-
priate Hertzian model; however, the resultant estimate of Young’s modulus depends strongly
on the depth of indentation of the points selected (Costa, 2004). Costa et al. (2006) proposed
to minimize the mean-squared error of a linear precontact and quadratic post-contact fit to
the indentation data, though under the assumption of equal precontact and post-contact
variances.

None of the existing approaches that have been adopted by practitioners, however, provides
any means of quantifying uncertainty in change-point estimation—an important consideration
in practice, since measurement errors can be large relative to the reaction force of the material
probed—and consequently may result in poor point estimates (Crick and Yin, 2007). Moreover,
such approaches fail to capture necessary physical constraints of the material indentation prob-
lem, such as the smoothness constraints that were described in Section 3.3. Such shortcomings
provide strong motivation for the hierarchical model that was developed above, as well as the
robust and automated fitting procedures that we describe next.

4. Posterior inference via Markov chain Monte Carlo sampling

The hierarchical Bayesian modelling framework that was introduced above features a large num-
ber of unknowns, with constraints on certain parameters precluding closed form expressions for
the marginal posteriors of interest. These considerations suggest a simulation-based approach
to inference; indeed, it is by now standard to use Markov chain Monte Carlo methods to draw
samples from the posterior in such cases. Though widely available software packages for Gibbs
sampling are adequate for inference in certain hierarchical Bayesian settings, the complexity
of the conditional distributions that we obtain here (after imposing constraints and integrating
out parameters whenever possible) necessitates explicit algorithmic derivations case by case.
For this, we build on the approaches of Carlin et al. (1992) and Stephens (1994) and employ
Metropolis-within-Gibbs techniques to draw samples from the posterior of distribution (6) as
well as under the smoothness constraints of Section 3.3.

4.1. Metropolized Gibbs samplers and variance reduction
The selection of conjugate priors in our model allows nuisance parameters to be integrated
out, to reduce the variance of the resultant estimators. Following standard manipulations, we
marginalize over the precontact and post-contact regression coefficients β1 and β2 respectively.
This yields the following marginal posterior probability distribution:
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p.γ, σ2
1, σ2

2, b0|y;ψ/∝σ
−2.a0−1/
1 exp.−b0=σ2

1/σ
−2.a0−1/
2 exp.−b0=σ2

2/bκ−1
0 exp.−b0=η/

× .|Σγ | |Σ| |Aγ |/−1=2 exp{− 1
2 .y′Σ−1

γ y +μ′Σ−1μ−b′
γA−1

γ bγ/}, .9/

where

Aγ =Δ X′
γΣ

−1
γ Xγ +Σ−1Λ∈Rp×p

is block diagonal and

bγ =Δ ΛΣ−1μ+Xγ
′Σ−1

γ y ∈Rp×1:

The marginal posterior of expression (9) factors into a gamma density in b0, and inverse gamma
densities in σ2

1 and σ2
2 by way of the following partitions of Aγ and bγ :

Aγ =
(

A1,γ 0
0 A2,γ

)
,

A1,γ ∈R.d1+1/×�γ�,
A2,γ ∈R.d2+1/×.n−�γ�/ ;

bγ =
(

b1,γ
b2,γ

)
,

b1,γ ∈R�γ�×1,
b2,γ ∈R.n−�γ�/×1 :

.10/

Expressions (9) and (10) lead to the following Gibbs sampler for change-point estimation (algo-
rithm 1).

(a) Draw γ ∼p.γ|σ2
1, σ2

2, b0, y;ψ/ according to distribution (9).
(b) Draw σ2

1 ∼IG{a0 + 1
2�γ�, b0 + 1

2 .y′
1,γy1,γ +μ′

1μ1 −b′
1,γA−1

1,γb1,γ/}.
(c) Draw σ2

2 ∼IG{a0 + 1
2 .n−�γ�/, b0 + 1

2 .y2,γ
′ y2,γ +μ′

2μ2 −b′
2,γA−1

2,γb2,γ/}.
(d) Draw b0 ∼G.κ, η−1 +σ−2

1 +σ−2
2 /.

To simulate from the conditional distribution of γ, we employ as a Metropolis-within-Gibbs
step a mixture of a local random-walk move with an independent Metropolis step in which the
proposal density is a pointwise evaluation of distribution (9) on the grid 1, 2, . . . , n of indenter
location indices. It is also possible to integrate out both noise variances (or the hyperparam-
eter b0). In this case, additional Metropolis steps are required, as the resulting conditional
density of b0 is non-standard. Our simulation studies confirm that these variants exhibit less
Monte Carlo variation than a Gibbs sampler that is based on the full posterior of distribu-
tion (6).

4.2. Posterior inference in the presence of smoothness constraints
Bearing in mind the underlying physics of soft materials, a sufficiently high sampling rate of
the force sensor relative to the speed of the indenter may yield data that are consistent with a
smoothness assumption of a given order s. In this setting, our inferential procedure may be mod-
ified accordingly to take this into account. Stephens (1994) considered continuity-constrained
switching linear regressions and used rejection sampling to draw from the conditional distribu-
tion of the change-point γ given the remaining model parameters. A more effective procedure,
however, is to transform the data such that all except one of the regression coefficients may be
integrated out; this variance reduction yields a Gibbs sampler that is analogous to algorithm 1
which we detail below. In fact, it is possible to derive such an algorithm for any value of s�0,
though for ease of presentation we first describe the case s = 0, whereupon only continuity is
enforced.

This approach to variance reduction in the presence of smoothness constraints proceeds as
follows: define β̃1 =β1 and, without loss of generality, let β̃2 contain the last d2 elements of
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β2, so that β̃= .β̃
′
1, β̃

′
2/′ contains all p=d1 +d2 +1 independent coefficients. Via the continuity

constraint of expression (7), define a linear transformation Tγ of β̃ to β as follows:

β=Tγβ̃, Tγ =Δ
( I.d1+1/×.d1+1/ 0.d1+1/×d2

c1×.d1+1/ 01×d2

0d2×.d1+1/ Id2×d2

)
, .11/

where Im×m is the m × m identity matrix, 0m×n is the m × n matrix of 0s and c1×.d1+1/ =Δ

.1, xγ , x2
γ , . . . , xd1

γ /. The choice of which of the d1 +2 regression coefficients to select as the depen-
dent variable is made without loss of generality, since a transformation similar to expression
(11) can be defined for every such choice, as well as for the continuity constraint of expression
(8).

Since one of the regression coefficients is now a deterministic function of the others and
the change-point, we place a prior directly on β̃ rather than on β. We assume that β̃1 ∼
N .μ1, σ2

1Λ
−1
1 / and β̃2 ∼ N .μ̃2, σ2

2Λ̃
−1
2 /, with Λ̃2 a d2 × d2 diagonal positive definite matrix.

Using the transformation Tγ of expression (11), we obtain by analogy with expression (9) the
full posterior

p.γ, β̃, σ2
1, σ2

2, b0|y;ψ/∝σ
−2.a0−1/
1 exp.−b0=σ2

1/σ
−2.a0−1/
2 exp.−b0=σ2

2/bκ−1
0 exp.−b0=η/

× .|Σγ | |Σ̃|/−1=2 exp[− 1
2{.y − X̃γβ̃/′Σ−1

γ .y − X̃γβ̃/

+ .β̃− μ̃/′Σ̃−1
Λ̃.β̃− μ̃/}], .12/

where X̃γ =XγTγ ∈Rn×p and, by analogy with the quantities .Σ,μ,Λ/, we define

Σ̃=Δ diag.σ2
11d1+1, σ2

21d2/∈Rp×p,

μ̃= .μ′
1, μ̃′

2/′ ∈Rp×1 and Λ̃=diag.Λ1, Λ̃2/∈Rp×p.
The transformation Tγ makes it possible to integrate out the regression coefficients β̃ by using

standard manipulations. Indeed, introducing the terms

Ãγ =Δ X̃
′
γΣ

−1
γ X̃γ + Σ̃

−1
Λ̃∈Rp×p

and

b̃γ =Δ Λ̃Σ̃
−1
μ̃+ X̃

′
γΣ

−1
γ y ∈Rp×1

as before, we obtain the marginal posterior

p.γ, σ2
1, σ2

2, b0|y;ψ/∝σ
−2.a0−1/
1 exp.−b0=σ2

1/σ
−2.a0−1/
2 exp.−b0=σ2

2/ bκ−1
0 exp.−b0=η/

× .|Σγ | |Σ̃| |Aγ |/−1=2 exp{− 1
2 .y′Σ−1

γ y + μ̃′Σ̃−1
μ̃− b̃γ

′ Ã
−1
γ b̃γ/}: .13/

It is straightforward to generalize this notion to any s ∈ {−1, 0, . . . , d1 + d2}; a prior is put on
d1 +d2 − s + 1 regression coefficients and a transformation Tγ analogous to expression (11) is
defined.

As noted previously, the smoothness constraint of expression (7) introduces dependence
between the pre- and post-change-point regression coefficients. In contrast with the marginal
posterior distribution of expression (9) that was derived earlier for the unconstrained case,
enforcement of constraint (7) precludes integrating out the associated noise variances σ2

1 and
σ2

2. In the former case, the block diagonal structure of Xγ (and therefore of Aγ) implies that the
induced joint distribution on the variances is separable. However, in the latter case of expression
(13), X̃γ is not block diagonal—owing to the action of Tγ—and hence nor is Ãγ . Therefore, the
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variances σ2
1 and σ2

2 are no longer conditionally independent, and their joint distribution does
not take the form of known generalizations of the univariate gamma distribution to the bivariate
case (Yue et al., 2001). Consequently, only the conditional distribution of the hyperparameter
b0 is in standard form, and simulation from posterior (13) proceeds with all other variables
drawn by using Metropolis–Hastings steps, as shown in the following smoothness-constrained
Gibbs sampler algorithm for change-point estimation (algorithm 2).

(a) Draw γ ∼p.γ|σ2
1, σ2

2, b0, y;ψ/ according to posterior (13) by using a Metropolis-within-
Gibbs step.

(b) Draw σ2
1 ∼p.σ2

1 |γ, σ2
2 , b0, y;ψ/ likewise.

(c) Draw σ2
2 ∼p.σ2

2 |γ, σ2
1, b0, y;ψ/ likewise.

(d) Draw b0 ∼p.b0|γ, σ2
1, σ2

2, y;ψ/=G.κ, η−1 +σ−2
1 +σ−2

2 /.

In contrast with the case of algorithm 1, where a mixture kernel was employed purely for com-
putational efficiency, we emphasize here that such a move is in fact required to sample from the
full support .1, n/ of the change-point index; otherwise mixing of the underlying chain is poor.
As before, the mixture kernel consisted of a local random-walk move and an independent global
move drawing from a discrete distribution derived as a pointwise evaluation of posterior (13)
on the integers 1, 2, . . . , n. The coupling of noise variances suggests a joint Metropolis–Hastings
move, but this requires the specification of a proposal covariance; in simulations we found that
separate normal random-walk moves for ln.σ2

1/ and ln.σ2
2/ were adequate.

We re-emphasize that, in our experience, integrating out the regression coefficients is essential
to obtain a Gibbs sampler with favourable mixing properties. In particular, a sampler drawing for
each parameter of expression (12) in the presence of smoothness constraints is severely restricted
in its ability to explore the state space if one co-ordinate at a time updates are employed. When s
continuous derivatives are enforced at the change-point, the likelihood function becomes more
non-linear in change-point xγ as s increases. Thus, as the induced constraint set becomes more
non-linear, local moves on the scale of the regression coefficients themselves will lie far from
it—leading to small acceptance probabilities. To overcome these problems, one may design a
high dimensional Metropolis–Hastings move to update all the smoothness-constrained regres-
sion coefficients jointly with the change-point; however, a unique move must be designed for
each s to be considered. In contrast, integrating out the regression coefficients obviates this need
by handling such constraints for all s simultaneously.

5. Experimental validation

To validate algorithms 1 and 2 experimentally before their application in the setting of AFM,
we designed and performed two sets of special macroscale indentation experiments in which
precise contact point identification was made possible by the use of an impedance-measuring
electrode mounted on the indenter. Although this direct measurement procedure is precluded
in the vast majority of biomaterials experiments involving cells and tissues, as such samples are
submerged in an aqueous solution, we could measure the true contact point for experiments
involving cantilever bending and silicone indentation, as described below.

In addition, we conducted some simulation studies to characterize uncertainty in change-
point estimation as a function of various model parameters. On the basis of these simulation
studies and subsequent experimental validation, we found that both algorithms were insensi-
tive to the exact choice of hyperparameters ψ, and hence we retained the following settings
throughout: μ= 0, Λ= 10−5Ip×p, a0 = 2, κ= 1 and η = 10−2, with p being the total number of
regression coefficients. We set the precontact polynomial degree d1 =1 throughout, on the basis
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of the discussion in Section 2 supporting the assumption of a linear precontact regime. When
smoothness constraints were used, we retained identical parameter settings and decremented
the value of p appropriately. All posterior distributions were obtained by running the appropri-
ate Gibbs samplers for 50000 iterations and discarding the first 5000 samples. Convergence was
assessed by using standard methods, confirming that increasing the number of Gibbs iterations
did not appreciably change the resulting inference.

5.1. Validation of change-point inference via cantilever bending
We first performed several trials of an experiment whereby a steel cantilever was bent through
application of a downward uniaxial force. Here, the measured force F is expected to change
linearly with displacement δ =x−xγ according to Hooke’s law, with γ ∈ .1, n/ representing the
contact point index. Representative data that are shown in Fig. 3 were obtained by using a
TestBenchTM Series system with a high fidelity linear actuator (Bose Corporation EnduraTEC
Systems Group, Minnetonka, Minnesota, USA), which moved a cylindrical indenter into a
cantilevered piece of FSS-05/8-12 spring steel measuring approximately 1.27 cm × 2.54 cm (car-
bon content 0.9–1.05%; Small Parts, Inc., Miramar, Florida, USA) at a speed of 10 mm s−1.
According to the impedance measurement technique that was described above, the contact point
index γ was determined to correspond to position index 48 of the indenter, corresponding to
a contact point xγ ∈ [−1:358, −1:262] mm. Because of the hardness of steel and the speed of
the indenter, we did not make a smoothness assumption and thus used the Gibbs sampler of
algorithm 1 to evaluate the efficacy of our approach, with p=4 based on the linear post-contact
regime implied by Hooke’s law.

A full 100% of posterior values for γ after a 10% burn-in portion took the value 48, indicating
correct detection of the change-point. Fig. 3 shows the results of the curve fitting procedure,with
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Fig. 3. Inference for the cantilever experiment of Section 5.1: (a) force–displacement data and posterior
mean reconstructions obtained via algorithm 1 with (b) a close-up view near the change-point and (c) the
associated residuals, and (d) marginal posterior of Young’s modulus with its mean ( ) and 95% interval ( )



14 D. Rudoy, S. G.Yuen, R. D. Howe and P. J. Wolfe

similar results obtained for varying indenter speeds. The minimum mean-square error (MMSE)
estimate of Young’s modulus was determined to be 215.3 GPa, with an associated 95% posterior
interval of [214:0, 216:6]. By comparison, the range of values of Young’s modulus for steel with
similar carbon content is reported in the literature to be 210±12:6 GPa (Kala and Kala, 2005).
Despite its simple design, this experiment is not far removed from practice; a nearly identical
procedure was employed by Wong et al. (1997) to probe the mechanical properties of silicon
carbide nanorods, with each nanorod pinned on a substrate and subjected to a bending force
along the unpinned axis.

5.2. Analysis of silicone indentation data
Whereas changes in slope at the contact point tend to be more pronounced in harder materials
such as steel, the change in measured force is typically smoother in softer materials such as
cells and tissues, making the contact point more difficult to detect. In earlier work (Yuen
et al., 2007) we detailed an indentation experiment using a soft silicone sample (Aquaflex;
Parker Laboratories, Fairfield, New Jersey, USA), which was chosen both for its similarity to
human tissues used in material indentation studies (Chen et al., 1996), and because it enables
direct contact point determination via an impedance-measuring electrode.

10 trials of this experiment were conducted, using a sample roughly 20 mm in depth, with a
maximum indentation of approximately 8 mm; a typical force–displacement curve was shown
earlier in Fig. 2. A hemispherical metal indenter of radius R=87:5 mm compressed the sample
at 10 mm s−1, and the resulting forces were measured approximately every 10 μm to yield
about 960 force–displacement data points. Both the unconstrained (s = −1) and continuity-
constrained (s=0) models were fitted in this setting, by way of algorithms 1 and 2 respectively.
For a spherically tipped indenter, the Hertzian model (2) indicates that force is proportional
to .x − xγ/3=2, and hence we employed a post-contact design matrix with only the fractional
power 3

2 . In this regime, we have that p=4 for algorithm 1 and p=3 for algorithm 2. Since the
initial distance from the indenter to the sample was approximately known, a uniform prior on
γ ∈ [125, 250] was assumed.

For each of the 10 data sets that were collected, the first n = 450 data points were taken to
represent a conservative estimate of operation within the small deformation regime, and the
Gibbs samplers of algorithms 1 and 2 were each run on these data. Results for both the cases are
summarized in Table 1, along with the experimentally determined contact point, which varied
from trial to trial owing to viscoelastic effects. Indeed, given that the spacing between data points
is 0.01 mm on average, it may be deduced from Table 1 that the average error of 0.8–1% across
trials corresponds to 8–10 sampled data points.

Marginal contact point posterior distributions for both the unconstrained and the continuity-
constrained cases are summarized, pairwise by experiment, in the box plots of Fig. 4. These are
seen to be notably more diffuse in the former case (left-hand side) than the latter (right-hand
side); this is consistent with the softness of the silicone sample under study, which makes it
difficult to reject a priori the possibility of continuity at the change-point. In the absence of this
assumption, the experimentally determined contact point lies within the 95% posterior interval
for each of the 10 trials. Once a continuity constraint has been imposed, the marginal posterior
distributions of the change-points tighten noticeably; this is consistent with our expectation that
constraining the model reduces the number of high likelihood fits.

A more subtle point can also be deduced from the slight yet consistent left-hand shift across
95% posterior intervals under the continuity-constrained regime relative to the unconstrained
case. Observe the fourth row of Table 1, which reports the values that were obtained on extrap-
olating precontact and post-contact MMSE curve fits to their meeting point in this case. The
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Table 1. Contact point estimates and associated errors for the 10 silicone trials of Section 5.2, based on
the unconstrained and continuity-constrained models, with force–response data sampled every 0.01 mm on
average†

Results for the following trials: Average

1 2 3 4 5 6 7 8 9 10

Truth .xγ/ 5.52 5.49 5.47 5.44 5.42 5.38 5.39 5.48 5.42 5.38 —
MMSE (unconstrained) 5.42 5.44 5.42 5.43 5.47 5.39 5.46 5.35 5.41 5.39 —
MMSE (continuity 5.40 5.43 5.41 5.39 5.46 5.37 5.41 5.34 5.34 5.39 —

constrained)
Extrapolated 5.39 5.42 5.40 5.37 5.42 5.36 5.40 5.32 5.34 5.38 —

(unconstrained)
% error (unconstrained) −1.78 −0.79 −0.83 −0.08 0.88 0.19 1.40 −2.23 −0.10 0.11 0.83
% error (continuity −2.06 −1.02 −1.13 −0.95 0.31 −0.25 0.47 −2.44 −1.41 0.03 1.00

constrained)
2.5 percentile 16.5 16.5 16.4 16.4 16.5 16.1 16.6 16.1 16.2 16.4 —
Ê (kPa) 17.2 17.3 17.2 17.0 17.2 16.8 17.4 16.8 17.0 16.9 17.1
97.5 percentile 17.9 18.4 17.9 17.6 18.0 17.6 18.1 17.7 17.8 17.9 —

†Young’s modulus estimates Ê and 95% posterior intervals for the unconstrained case are also shown, along with
averages over all 10 trials where appropriate.

Fig. 4. Box plots of contact point marginal posterior distributions in each of 10 silicone indentation trials,
shown side by side for the unconstrained (left) and continuity-constrained (right) models, with the centres of
the grey squares indicating true contact point values: note the consistent decrease in posterior variance and
slight downward shift of the posterior under the assumption of continuity

increase in force after contact implies that these values will always lie below the directly inferred
contact point, as indeed they do. Nevertheless, enforcing continuity results in only a small
increase in overall contact point estimation error and produces what practitioners might judge
to be more physically feasible curve fits. Although independent verification of Young’s modulus
is not available for the silicone sample that was used in our study, the quality of our contact
point estimates relative to a known ground truth leads to high confidence in the inferred values
of Young’s modulus.
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Overall, the ability to obtain inferential results and accompanying uncertainty quantifica-
tion, as exemplified by the cantilever bending and silicone indentation experiments, represents
a significant improvement on current methods; a more detailed comparison with the method of
Costa et al. (2006) is provided in our earlier work (Yuen et al., 2007). In particular, the latter
experiment demonstrates that reliable estimates of soft material properties can be obtained even
in the presence of measurement error—a regime applicable to many AFM studies of cells and
tissues, as we now describe.

6. Inference in the setting of atomic force microscopy

Having validated our algorithms on a macroscopic scale, we turn to analysing cellular bioma-
terials data collected by using AFM techniques. In contrast with our earlier examples, no direct
experimental verification is available in this case, though we note that our resultant estimates
of Young’s modulus are considered plausible by experimentalists (Socrate and Suresh Labora-
tories, personal communications, 2008).

It is widely believed that cell biomechanics can shed light on various diseases of import,
and hence a key research objective following the advent of AFM technology has been to anal-
yse quantitatively the mechanical properties of various cell types. Indeed, numerous references
over the past decade have linked stiffness and other related mechanical properties to cell mal-
function and death (Costa, 2004); for example, the ability of cardiac myocytes in heart muscle
tissue to contract is intimately linked to their cytoskeletal structure and its influence on cellular
mechanical response (Lieber et al., 2004). Here, we are similarly motivated to understand the
stiffness properties of neuronal and red blood cells—currently a topic of intensive research in
the biomechanics and bioengineering communities.

6.1. Indentation study of embryonic mouse cortical neurons
We first analysed ex vivo live mouse neurons, submerged in cell culture medium and repeatedly
indented by an atomic force microscope (Asylum Research, Santa Barbara, California, USA)
equipped with a spherically tipped probe. The indentation of each neuron (Socrate Labora-
tory, Massachusetts Institute of Technology) yielded approximately 700 force measurements,
of which the first 500 were used in subsequent analysis to stay within the small deformation
regime. Such data are of wide interest to neuroscientists and engineers, as traumatic damage to
neurons is hypothesized to be related to their mechanical properties.

As a spherical probe tip was used for indenting each cell, we employed a post-contact design
matrix with only the fractional power 3

2 , as in the case of our earlier silicone example, and the
continuity-constrained sampler of algorithm 2. The results of a typical trial are shown in Fig. 5;
the precontact and post-contact residuals were observed to be white. The primary inferential
quantity of interest in such cases is Young’s modulus, which is the principal characterization of
cell material stiffness that was introduced in Section 2.2. According to the Hertzian model (2)
for a spherical indenter, the regression coefficient corresponding to the .x−xγ/3=2-term of the
fitted model is proportional to Young’s modulus, with the constant of proportionality a function
of the given radius R = 10 μm and Poisson’s ratio ν = 0:5. Thus, we can obtain the posterior
distribution of Young’s modulus by appropriately scaling the distribution of this regression
coefficient, as shown in Fig. 5(c). We report the MMSE estimate of Young’s modulus as Ê=530:4
Pa, and the corresponding 95% posterior interval as [518:8, 544:1] Pa. This estimate is in reason-
able agreement with those previously reported for similar neurons (Lu et al., 2006; Elkin et al.,
2007), with variability due primarily to differences in indentation speeds (Socrate Laboratory,
personal communication, 2008).
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Fig. 5. Data collected during an AFM indentation of a mouse neuron together with (a) the posterior mean
estimate of the underlying regressions and (b) the induced residuals: also shown are marginal posterior
distributions of (c) Young’s modulus and (d) the contact point, each overlaid with the posterior mean ( ) and
95% posterior interval ( )

6.2. Indentation study of red blood cells
The mechanics of red blood cells have also been extensively studied by using AFM (Radmacher
et al., 1996). In this vein, we next analysed data from ex vivo live human erythrocytes (red blood
cells, Suresh Laboratory, Massachusetts Institute of Technology) submerged in a cell culture
medium, indented by an atomic force microscope (Asylum Research) equipped with a pyrami-
dally tipped probe. The final 800 of approximately 8500 data points were discarded before the
analysis, as they clearly lay outside the small deformation regime. Relative to the neuron AFM
data that were considered in Section 6.1, the sampling rate of resistive force here is high, and
consequently it is feasible to enforce continuity (s = 0) at the change-point. Algorithm 2 was
therefore employed, with results from a typical trial shown in Fig. 6.

In the case at hand, the regression coefficient β12 corresponding to .x−xγ/2 is proportional
to Young’s modulus as per model (2), with the constant of proportionality depending on the
indenter tip angle 2φ=70◦ and Poisson ratio ν =0:5, and, as we discuss below, no linear post-
contact regression term was included. The inferred distribution of Young’s modulus may be
obtained by appropriately transforming the marginal posterior of β12, as detailed in Section 3.1,
and is shown in Fig. 6(c). The resultant MMSE estimate of Ê = 25:3 Pa and corresponding
posterior interval of [16:0, 34:9] Pa were confirmed to be consistent with various experimen-
tal assumptions (Suresh Laboratory, personal communication, 2008). Further, the precontact
and post-contact error variances are determined to be unequal, as shown in Fig. 6(d).
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μ μ
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Fig. 6. Data collected during an AFM indentation of a human red blood cell together with (a) the posterior
mean estimate of the underlying regressions and (b) the induced residuals: also shown are marginal poster-
ior distributions of (c) Young’s modulus overlaid with the posterior mean ( ) and 95% posterior interval ( ) and
(d) σ2

1 ( ) and σ2
2 ( )

In the absence of a post-contact drift, enforcing continuous differentiability at the change-
point (s=1) constrains the precontact linear fit to have zero slope and is inconsistent with the
precontact drift that is clearly visible in Fig. 6(a). However, if the post-contact polynomial were
to include a linear drift term, then enforcing continuous differentiability would imply that the
precontact and post-contact drifts are identical. Though this is appealing from a modelling
viewpoint, as it eliminates an additional free parameter, practitioners lack evidence for such an
equality. Moreover, in our experiments its inclusion had no appreciable effect on the inference
of Young’s modulus, and so we did not include a post-contact drift term in our final analysis of
these data.

As in our earlier experiments, we compared our approach with the likelihood method of Costa
et al. (2006), which yielded an estimate of xγ that was shifted to the right by more than 1000
data points relative to that shown in Fig. 6. The corresponding estimate of Young’s modulus
in turn was found to be 34.8 Pa—an increase of 37.5% relative to the MMSE point estimate
of 25.3 Pa, and close to the upper boundary of our estimated posterior interval. Although in
this experimental setting one cannot conclude that either estimate is superior to the other, we
note that the difference between them can be attributed in part to our model’s incorporation
of differing precontact and post-contact error variances, and smoothness constraints. Thus, we
may view our inferential procedures as both a formalization and an extension of earlier like-
lihood-based approaches developed by practitioners, enabling both robust, automated fitting
procedures and explicit uncertainty quantification.
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7. Discussion

In this paper we have posed the first rigorous formulation of—and solution to—the key inferen-
tial problems arising in a wide variety of material indentation systems and studies. In particular,
practitioners in the materials science community to date have lacked accurate, robust and auto-
mated tools for the estimation of mechanical properties of soft materials at either macroscales
or microscales (Lin et al., 2007a; Crick and Yin, 2007). A principal strength of our approach
is its applicability to the analysis of biomaterials data that are obtained by indenting cells and
tissues by using AFM; contact point determination is even more difficult in this setting, owing
to the gradual change in measured resistive force that is a hallmark of soft materials. The Bayes-
ian switching polynomial regression model and associated inferential procedures that we have
proposed provide a means both to determine the point at which the indenting probe comes
into contact with the sample and to estimate the corresponding material properties such as
Young’s modulus. In turn, its careful characterization holds open the eventual possibility of
new biomechanical testing procedures for disease (Costa, 2004).

Our parametric approach is strongly motivated by—and exploits to full advantage—the
Hertzian models governing the physical behaviour of linear elastic materials undergoing small
deformations. The Bayesian paradigm not only enables quantification of uncertainty, which is
crucial in applications, but also allows for the natural incorporation of physically motivated
smoothness constraints at the change-point. Inference is realized through application of care-
fully designed Markov chain Monte Carlo methods together with classical variance reduction
techniques. The resultant algorithms have been shown here to be both statistically and com-
putationally efficient as well as robust to the choice of hyperparameters over a wide range of
examples, and they are available on line for use by practitioners. Indeed, the direct applicability
of our methods precludes any need for data preprocessing before analysis.

Outside the linear elastic materials that we considered here, it is of interest to apply the meth-
odology to viscoelastic materials (e.g. biopolymers) which return to their precontact state slowly
over time (Lin et al., 2007b). In such cases, the amount of induced deformation depends not only
on the indenter geometry but also on the rate of indentation. Another extension is to incorpo-
rate multiple spatially distributed change-points into our model, which is a key construct when
atomic force microscopes are used to indent repeatedly a sample in order to characterize cell
stiffness as a function of surface location (Geisse et al., 2009). Finally, a sequential estimation
scheme could be of great use in surgical robotics applications, where contact point determination
plays a key role in enabling tactile sensing—a subject of current study by the authors.
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