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Abstract

3D ultrasound imaging has enabled minimally invasive, beating heart
intracardiac procedures. However, rapid heart motion poses a serious
challenge to the surgeon that is compounded by significant time de-
lays and noise in 3D ultrasound. This paper investigates the concept
of using a one-degree-of-freedom motion compensation system to syn-
chronize with tissue motions that may be approximated by 1D motion
models. We characterize the motion of the mitral valve annulus and
show that it is well approximated by a 1D model. The subsequent de-
velopment of a motion compensation instrument (MCI) is described,
as well as an extended Kalman filter (EKF) that compensates for
system delays. The benefits and robustness of motion compensation
are tested in user trials under a series of non-ideal tracking condi-
tions. Results indicate that the MCI provides an approximately 50%
increase in dexterity and 50% decrease in force when compared with
a solid tool, but is sensitive to time delays. We demonstrate that the
use of the EKF for delay compensation restores performance, even in
situations of high heart rate variability. The resulting system is tested
in an in vitro 3D ultrasound-guided servoing task, yielding accurate
tracking (1.15 mm root mean square) in the presence of noisy, time-
delayed 3D ultrasound measurements.
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1. Introduction

Real-time 3D ultrasound (3DUS) imaging has enabled new
surgical procedures within the beating heart that are not pos-
sible with current endoscopic technology (Cannon et al. 2003�
Suematsu et al. 2005). These procedures eliminate the need for
cardiopulmonary bypass and its attendant side effects, such as
increased stroke risk, decline in cognitive performance, delay
of neural development in children, and damage to the major
vessels (Zeitlhofer et al. 1993� Bellinger et al. 1999� Murkin
et al. 1999). Beating heart procedures also make the real-
time evaluation of structural modifications possible while the
heart continues to function. The benefits of such procedures
are clear� however, the rapid motion of the heart poses seri-
ous challenges to the surgeon. This is especially true of proce-
dures involving intracardiac structures such as the mitral valve,
which recoils rapidly with every heartbeat. In order to realize
the potential of minimally invasive beating heart mitral valve
procedures, the difficulty of manipulating tissues undergoing
fast motion must be addressed.

One appealing approach to the beating heart repair of in-
tracardiac structures is robotic assistance to the surgeon. In
this setting, the surgeon uses a handheld robotic instrument
that tracks the fast motion of the heart so that the operation is
performed on an effectively stopped heart (i.e. as if the heart
were not beating). This is similar to previously proposed mo-
tion compensation systems in which the surgeon could inter-
act with the heart on a supported moving platform (Trejos et
al. 1999) or teleoperate on a “virtually” stopped heart (Naka-
mura et al. 2001� Ortmaier et al. 2005� Ginhoux et al. 2006�
Bebek and Cavusoglu 2007). This approach should be distin-
guished from the recent clinical application of commercial sur-
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gical robots in performing minimally invasive mitral valve re-
pair, with a stopped heart and cardiopulmonary bypass (Re-
ichenspurner et al. 2005�Woo et al. 2006). Prior work on beat-
ing heart motion compensation has largely focused on the de-
velopment of robust tracking controllers intended for multi-
degree-of-freedom (DOF) robot manipulators and extracardiac
procedures. However, implementing a full six-DOF robot for
intracardiac applications has a number of challenges, including
the development of a manipulator with sufficient mechanical
bandwidth, creating a wrist that can operate in the restricted
workspace within the beating heart, and ensuring safety for a
complex manipulator system. These requirements are far be-
yond the capabilities of current commercial surgical robots.

Another major consideration for beating intracardiac pro-
cedures is guidance inside of the heart, which requires imag-
ing tissue through blood in real-time. Currently, 3DUS is the
only technology that has these capabilities: endoscopic sys-
tems are obscured by blood, and computed tomography and
magnetic resonance imaging are not yet able to image at the
speeds necessary for beating heart surgery. 3DUS also eases
the difficulties in spatial perception experienced with tradi-
tional 2D ultrasound (Cannon et al. 2003). However, for all
of its advantages, the acquisition and processing of 3DUS
volumes introduces a substantial time delay, during which
time the annulus can recoil over the majority of its trajec-
tory (Novotny 2007). Servoing a robot with these measure-
ments directly would result in large errors that could damage
the valve and nearby structures.

In this paper we describe a robotic motion compensation
system that is compatible with the space limitations inside the
heart and also counteracts the delays and noise in 3DUS imag-
ing. The system comprises an actuated one-DOF instrument
commanded by a predictive filter (Figure 1). The surgeon can
use this system in procedures where the motion of the cardiac
tissue is largely in a single direction. As will be shown shortly,
this includes the motion of the mitral valve annulus, and thus
the system can be used for beating heart mitral annuloplasty:
the most frequently performed element of mitral valve repair.
The instrument consists of a linear actuator capable of follow-
ing the major component of the annulus motion. The filter that
is used to command the actuator, an extended Kalman filter
(EKF), can accurately track and predict annulus motion in the
presence of noise by exploiting quasiperioidicity in its motion.
It is used to feed-forward the trajectory of a cardiac target to
the instrument controller for accurate synchronization despite
time delays.

In the following, we first characterize the motion of the
mitral annulus to determine the tracking performance require-
ments of the system. Next, we present the design of the ac-
tuated one-DOF motion compensation instrument (MCI). We
then describe the EKF and several other predictive filtering
methods and compare them in simulation. Two subsequent
user studies evaluate the efficacy of the robotic motion com-
pensation system against traditional non-tracking tools in a

Fig. 1. Motion compensation system. Time-delayed position
measurements of the target are provided to a filter which uses
prediction to compensate for delay. These are fed-forward to
the controller of the one-DOF MCI to synchronize with the
target motion. The surgeon holds the instrument and navigates
its end-effector to the target using 3DUS imaging.

simulated in vitro surgical task. Furthermore, they validate the
robustness of the system in situations of high noise, time de-
lay and heart rate variability. Finally, we measure the position
tracking accuracy of the system in a series of 3DUS-guided
motion synchronization experiments.

2. Motion Analysis of the Mitral Valve Annulus

To guide the development of the motion compensation sys-
tem, the motion of the mitral valve annulus was analyzed us-
ing ultrasound image data such as that available in surgery for
real-time guidance. A transthoracic 3DUS image-volume se-
quence of the mitral annulus was acquired1 at 24 Hz (SONOS
7500, Philips Medical Systems, Andover, MA, USA). This raw
3DUS data was manually segmented to extract mitral annulus
trajectory information. For each 3D volume sample, a mini-
mum of 50 data points were selected from the mitral valve
annulus and used to locate the annulus centroid. Repeated for
each time-stamped data frame, this process generated a record
of the annulus centroid position over the cycle of the heartbeat.
As this manual segmentation process was extremely labor in-
tensive, only data from two patients were analyzed.

In order to specify hardware design constraints for the mo-
tion compensation instrument, position, velocity, and accelera-
tion along the major axis of the valve’s motion were extracted

1. 3DUS frame rates are between 24 and 28 Hz and are dependent on machine
settings during data acquisition. Rates of 28 Hz are commonly obtained during
in vivo procedures.
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Fig. 2. Orthogonal views of 3DUS tracking data centroid posi-
tions plotted in principal component axes. The axes are scaled
in millimeters. Note the dominance of motion in the first com-
ponent.

from these data. Using singular value decomposition (SVD),
a line was fit to each data set. The relative sizes of the singu-
lar value associated with each orthonormal basis vector gen-
erated by SVD (i.e. 21.75, 5.49, 2.97) suggest that the valve’s
motion is strongly constrained to a principal axis (Figure 2).
Furthermore, working with sheep, Gorman et al. (1996) gen-
erated tracking data which indicates that rotational movements
around this primary axis are also negligible. Subsequent analy-
sis presented here will therefore focus on the component of
motion along this primary axis.

Velocity and acceleration were estimated by considering
the relative motion between 3DUS data samples. This method
provided mitral valve velocity and acceleration maxima of ap-
proximately 210 mm s�1 and approximately 3.8 m s�2, respec-
tively, with a total travel of approximately 20 mm at a heart rate
of 76 beats per minute (bpm). While only two subjects were
analyzed in this fashion, work by Kamigaki and Goldschlager
(1972) on the mitral valve leaflets reports similar velocity and
amplitude results.

The major frequency components of motion were also re-
viewed using spectral decomposition (Figure 3). This analy-
sis indicates major motion components at 1.3, 2.6, and 5.2 Hz
with further components of decreasing amplitude at higher fre-
quencies. This is consistent with the findings of Nakamura
et al. (2001) which show dominant frequency components of
1.5 and 3.0 Hz in the motion of porcine epicardium. Gin-
houx et al. (2006) found the same major frequency compo-
nents in the motion of porcine epicardium. This paper also
noted higher-frequency transients that it deemed significant
and concluded that a 25 Hz sampling rate would be insufficient
to track the motion of the epicardium with high precision (Gin-
houx et al. 2006). Bebek and Cavusoglu (2007) found similar
frequency components, but concluded that the motion could
be adequately characterized using lower sampling frequencies,
i.e. 26 Hz.

Fig. 3. 3DUS tracking data spectral decomposition. Motion
amplitudes decrease quickly with increasing frequency.

Fig. 4. Diagram of proposed surgical procedure. The anchor
driver approaches along the valve’s axis, which corresponds to
the valve’s major component of motion.

3. Motion Compensation Instrument Design

The MCI developed here is an actuated handheld or robot-
mounted minimally invasive tool to aid surgeons in working
on the moving mitral valve. Rather than attempting to correct
for motion components in all three dimensions, the objective
was to develop a device that could compensate for the ma-
jor component of motion and allow surgeons and passive tis-
sue compliance to counter the slow or relatively minor mo-
tions along the remaining two axes. The surgical procedure
that we are developing for this purpose is a modification of a
minimally invasive beating heart procedure for the repair of
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Fig. 5. MCI design and prototype. A, MCI actuation package. The MCI may be mounted by its base (at the upper left of the
image) to a robot or handle. The surgical anchor driver is mounted on the linear slide carriage. B, MCI hardware prototype.

atrial–septal defects (Vasilyev et al. 2006). In the new pro-
cedure, the instrument will be inserted through the left atrial
appendage and controlled by a pursestring suture. A custom
annuloplastry ring will be inserted through an adjacent inci-
sion and positioned over the mitral annulus (Figure 4). The
actuated instrument will be tipped with a modified 14 gauge
needle (OD � 0�083 in) that will deploy anchors to “staple”
the annuloplasty ring to the annulus (Wagner et al. 2006). The
surgeon will then maneuver the ring and anchor driver to the
appropriate locations over the annulus and repeatedly fire the
anchor driver to attach the ring and reshape the annulus.

The selection of the mechanical mechanism to follow the
linear motion component of the mitral valve annulus was
guided by the clinical 3DUS trajectory analysis from Sec-
tion 2. The high velocity and acceleration requirements lead
to a linear motor-based design which benefits from low fric-
tion and low moving mass (Figure 5). This design format also
produces a surgical tool similar in design and function to typ-
ical endoscopic tools, supported by a port and maneuvered by
hand. Consequently, the MCI will be intuitive to operate for
trained endoscopic surgeons.

The MCI uses a voice coil motor (NCC20-18-020-1X,
H2W Technologies, Inc., Valencia, CA, USA) and a high lin-
earity potentiometer (P3 America, San Diego, CA, USA) for
position sensing. These components are mounted on a lin-
ear ball-bearing stage (BX4-3, Tusk Direct, Inc., Bethel, CT,
USA). The MCI prototype has a 5.4 cm range of motion and is
powered by a linear power amplifier (BTA-28V-6A, Precision
MicroDynamics, Victoria, BC, Canada). PID servo control is
implemented in a 1 kHz servo loop on a personal computer
under Windows XP. The MCI is interfaced to this computer
through a data acquisition card (PCI-60-40E, National Instru-
ments, Corp., Austin, TX, USA).

The resulting system has the characteristics required to
track the mitral valve. The MCI has demonstrated velocities
and accelerations as high as approximately 290 mm s�1 and

Fig. 6. Frequency response of the MCI. The system is over-
damped and has a �3 dB point of 20.6 Hz.

approximately 17.5 m s�2, respectively. Controller gains were
hand tuned to achieve good stiffness and response. To avoid
potentially dangerous overshoot and instability, the system is
overdamped. The tool has a static stiffness of 0.23 N mm�1

and a friction force less than 0.009 N. The system’s frequency
response is similarly adequate for the tracking task (Figure 6).
The system has a �3 dB point of 20.6 Hz and roll-off rate of
40 dB per decade. The potentiometer on the MCI is capable of
measuring position with a root mean square error (RMSE) of
less than 0.01 mm. The system is capable of maintaining sta-
tionary at a commanded position with a RMSE of 0.009 mm.

The tracking abilities of the MCI were demonstrated by
commanding the system to follow the motion of a mitral valve
at 60 bpm (Figure 7). Mitral motion was determined from
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Fig. 7. The MCI tracking a simulated mitral valve trajectory.
The MCI motion profile closely mimics that of the target with
an approximately 14 ms delay.

the 3DUS data above (Figure 2). The MCI reliably replicated
the motion profile of the valve with an effective delay of
14 ms.

4. Time Delay Compensation

The time delay that is intrinsic to 3DUS makes direct servoing
of the MCI from this signal potentially dangerous. A previous
characterization of the acquisition, transmission, and computa-
tion times for 3DUS estimated delays of approximately 70 ms,
a sufficient amount of time for the mitral valve annulus to tra-
verse the majority of its path (Novotny 2007). For the purposes
of illustration, an example of the error for MCI tracking a mi-
tral valve target with a 75 ms measurement delay is shown in
Figure 8. The rapid recoil of the valve associated with ven-
tricular relaxation (100–200 ms in Figure 8) results in a large
(approximately 14 mm) tracking error that would cause the in-
strument to pierce and damage the tissue target.

4.1. Predictive Filters

To avoid this outcome, we exploit the near periodicity of the
mitral valve trajectory to predict its path and hence compensate
for time delay. However, such predictions must be made in the
presence of measurement noise and a potentially variable heart
rate. Here we describe and evaluate several predictive filtering
methods that can be employed for delay compensation in this
setting: an autoregressive (AR) filter, a fading memory AR
filter, and an EKF with a quasiperiodic motion model. The AR
filter has previously been applied by Nakamura et al. (2001) in
a spectral analysis of heart motion for motion compensation in
coronary artery bypass graft (CABG) procedures. In principle,
this method is equivalent to the adaptive harmonic filter bank

used by Ginhoux et al. (2006) for CABG and has its atten-
dant assumption of a fixed heart rate. The fading memory AR
filter overcomes this limitation despite using the same model
by exponentially discounting the measurements supplied to the
filter, thereby allowing it to adjust to more recent informa-
tion. This approach has been used for motion synchronization
in CABG by Franke et al. (2007). In contrast, the EKF per-
mits variations to heart rate by directly accounting for it in a
time-varying Fourier series model. A similar model was em-
ployed by Riviere et al. (1998) in the weighted Fourier linear
combiner (WFLC) estimator for CABG� however, unlike the
EKF, this method does not explicitly model noise. Ortmaier et
al. (2005) has evaluated other non-linear prediction techniques
for CABG such as artificial neural networks and an estimator
based on Takens theorem.

4.1.1. AR Model with Least Squares Estimator

Fixed-rate mitral valve motion can be modeled as an n-order
AR model

y[k] �
n�

i�1

�i y[k � i]� (1)

where �i , i � �1� � � � � n�, are the model coefficients and y[k]
is the target position at time sample k. Note that rather than
explicitly assuming periodicity in the target motion, this model
predicates that the kth position can be expressed as a linear
combination of the previous n positions.

In order to predict the target position, the model coefficients
and order must be estimated. The first can be achieved in real-
time using the recursive covariance method estimator. Denot-
ing z[k] � y[k]��[k] as the noise-corrupted position measure-
ment at time sample k with �[k] 	 � �0� � 2

R

�
, this estimator

is expressed compactly in matrix form as

�[k] � [z[k � n � 1]� � � � � z[k � 1]] �

�[k] � �[k � 1]��[k]T�[k]� (2)


�[k] � 
�[k � 1]��[k]�1�[k]T

� �
z[k]�� 
�[k � 1]

�
� (3)

with initial conditions �[0] � 0 and 
�[0] � 0. An appropri-
ate AR model order was determined using the Akaike infor-
mation criteria on the mitral valve annulus trajectory in Fig-
ure 2, yielding n � 30. Predicted target locations, 
y[k], can be
obtained through evaluation of (1). In addition, the target tra-
jectory can be interpolated from its inherent measurement rate
(i.e. 28 Hz, a typical 3DUS frame rate) to the higher control
rate of the robot using the Whittaker–Shannon interpolation
formula.
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Fig. 8. MCI tracking of a mitral valve target with 75 ms measurement delay. A, MCI and target positions. B, Tracking error. Note
that the additional 14 ms response time of the MCI yields an effective delay of 89 ms. Maximum and RMS tracking errors are
14.49 and 4.60 mm, respectively.

4.1.2. AR Model with Fading Memory Estimator

Imperfect periodicity can cause the AR model coefficients to
change over time. In this situation, it can be useful to pref-
erentially weight recent measurements over those in the past:
otherwise the filter becomes progressively less responsive to
new data and (3) does not update 
� because �[k]�1�T � 0
as k �
. Exponential weighting of previous measurements
in the iterative least squares estimator is achieved through a
simple modification of (2):

�[k] � f�[k � 1]��[k]T�[k]�

where 0 � f � 1 is the so-called fading factor. Choosing
f � 1 recovers the estimator of Section 4.1.1 while choosing
f � 0 increases the speed by which previous measurements
are discounted. To distinguish between the two estimators, we
term the former the AR filter and the latter the fading AR filter
for the remainder of this section. As can be imagined, reducing
the contribution of previous measurements ( f � 1) can be
desirable if the trajectory evolves through time, although doing
so incurs increased estimation error when the trajectory is not
time varying.

4.1.3. Time-varying Fourier Series Model with EKF

The spectral analysis of mitral valve annulus motion from Sec-
tion 2 suggests that its motion may be approximated by a lim-
ited number of harmonics. Consider a perfectly periodic mo-
tion model obtained by an m-order Fourier series with a con-
stant offset

y�t� � c �
m�

i�1

ri sin�i	t � 
i �� (4)

where y�t� is the position in ultrasound coordinates, 	 is the
heart rate, c is the constant offset, and ri and 
i are the har-
monic amplitudes and phases, respectively. Accurate modeling
of quasiperiodicity requires a more flexible model in which the
heart rate and signal morphology can evolve over time. Using
the parametrization of Parker and Anderson (1990), the trajec-
tory can be expressed as the following time-varying Fourier
series

y�t� � c�t��
m�

i�1

ri �t� sin � i �t�, (5)

where � i �t� � i
� t

0 	��� d� � 
i�t� and all other parameters
are the time-varying equivalents to those in (4).

Defining the state vector ��t� � [c�t�� ri�t�� 	�t�� � i �t�]
T,

i � �1� � � � �m� and assuming that c�t�� ri �t�� 	�t�, and 
i �t�
evolve through a random walk, the state space model for this
system is

��t �
t� � � �
t���t�� ��t�
z�t� � h���t��� ��t�,

where

� �
t� �

�
�����������������

�m�1 0

1


t 1

0 2
t 0 1

���
� � �

m
t 1

�
																


�
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h���t�� � y�t� from (5), ��t� 	 � �0� � 2
R

�
is zero mean

Gaussian measurement noise, and ��t� 	 � �0��� is the ran-
dom step of the states assumed to be drawn from a zero mean
multivariate normal distribution with covariance matrix�.

Prediction with this model requires estimation of the 2m�2
parameters in ��t�� a non-linear estimation problem owing
to the measurement function, h���t��. We employ the EKF,
a non-linear filtering method that approximates the Kalman
filter through linearization about the current state estimate

��t � t�. The EKF can be computed in real-time using the re-
cursion

� �t �
t � t� � �� �t � t�� T ��

S � � 2
R ��� �t �
t � t��T

� � � �t �
t � t��T S�1


��t �
t � t �
t� � � 
��t � t����z�t �
t�� h�� 
��t � t���

� �t �
t � t �
t� � �� ����� �t �
t � t�,

where

�T �
�
�h

��

�T







��t�
t�t��� 
��t�t�

�

�
�����������������������������

1

sin 
�1�t �
t � t�

���

sin 
�m�t �
t � t�

0


r1�t �
t � t� cos 
�1�t �
t � t�

���


rm�t �
t � t� cos 
�m�t �
t � t�

�
																												


,

and 	 ��� � E
� 
���� 
����T �denotes the state estimate covari-

ance, whose initialization is described later in this section.
Note that the time dependencies for � , 
, S, and � have
been dropped for notational convenience. The EKF as pre-
sented here is a slight variant on that first introduced by Parker
and Anderson (1990).

To initialize this filter, we first assume that y�t� has constant
fundamental frequency yielding N noisy measurements over
the interval t � [0� N
t]. Observation of Figure 3 indicates
that the dominant frequency peak is the fundamental frequency

of the signal (i.e. heart rate). We apply a fast Fourier transform
(FFT) to the data sequence with a Hamming window to obtain
the power spectrum. The maximum frequency peak within a
reasonable human heart rate range (0.5 to 2.5 Hz) is used to
initialize the estimate of 
	0 � 	�t � N
t�.

Assuming 
	0 to be correct, the problem can be rewritten as
a linear estimation problem to obtain the harmonic amplitudes
and coefficients. Equation (4) is equivalently reparametrized
as

y�t� � c0 �
m�

i�1

�
ai sin�i 
	0t�� bi cos�i 
	0t�

�
. (6)

Collecting the measurements z�t�, 0 � t � N
t we have
�� � 
 
�0 � �, where �� � [z�0�� z�
t�� � � � � z�N
t�]T,

�0 � [c0� a1� � � � � am� b1� � � � � bm]T, � is a vector of measure-
ment noise, and

�T �

�
������������������������

1 1 � � � 1

sin� 
	00� sin� 
	0
t� � � � sin� 
	0 N
t�

���
���

���

sin�m 
	00� sin�m 
	0
t� � � � sin�m 
	0 N
t�

cos� 
	00� cos� 
	0
t� � � � cos� 
	0 N
t�

���
���

���

cos�m 
	00� cos�m 
	0
t� � � � cos�m 
	0 N
t�

�
																							


,

to which the least squares estimate is obtained as 
��0 �
�
T
��1
T ��. 
��T �T � is then initialized with the values

c�T � � 
c0, 
	�T � � 
	0, 
ri �T � � � 
a2

i � 
b2
i �
�1�2, and


� i �T � � arctan� 
bi � 
ai �. The state estimate covariance is set to
	 �T �T � � diag[� 2

R�N� � 2
1� �

2
1�2

2� � � � � � 2
1�m2� � 2

	� 0�02 rad2�
� � � � 0�02 rad2]. The relationship between the amplitude uncer-
tainties is chosen to reflect the decreasing harmonic strength
seen in Figure 3, while the phase uncertainties follow those
used in (Parker and Anderson 1990). Parameters � 2

1 and � 2
	

are determined through experimentation. Last we assume that
the process noise covariance � is diagonal with all values set
to 10�4 except for q	, the entry corresponding to 	�t�.

4.2. Simulation Studies

Three simulation studies were conducted to evaluate the ca-
pabilities of the EKF, AR filter, and fading AR filter to the
primary sources of random error in the system: measurement
noise and heart rate variability. For illustrative purposes, the
filters were also compared with the WFLC estimator (Riviere
et al. 1998) and a simpler method of using the previous cardiac
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Fig. 9. RMS prediction error results for parametric simulation studies. A, Error for varying measurement noise� B, error for step
heart rate changes.

cycle trajectory for the prediction of the next. A more sophis-
ticated version of the latter method, called the last cycle here,
was used successfully in a beating heart tracking system (Be-
bek and Cavusoglu 2007).

In the first simulation, we subjected the predictors to vary-
ing levels of measurement noise on a fixed-rate trajectory (60
bpm). The mitral annulus trajectory of Figure 2 was reinterpo-
lated to 28 Hz and corrupted by additive zero-mean Gaussian
noise with standard deviation 0�3 � � R � 3 mm. Each predic-
tor was then given 30 sec of data to initialize and performance
was judged for the following 10 sec on 1-sample ahead predic-
tions.

The RMSEs for each predictor averaged across 100 Monte
Carlo trials are shown in Figure 9A. The EKF, WFLC, AR,
and fading AR filtering methods clearly give higher-accuracy
predictions than the inherent uncertainty of the measurements,
with the EKF doing the best. As expected, the last cycle
method had error statistics equal to � R since it attempts no
smoothing. It should be noted that the fading AR filter was
tuned with f � 0�985 in order to achieve errors that are ap-
proximately equal to � R . This setting represents the lowest
reasonable value for the fading AR filter since a lower value
would give performance below the last cycle method. The EKF
was run with m � 8 harmonics, N � 280 initialization points
(10 seconds), � 2

1 � 2 mm2, � 2
	 � 0�11 �rad/s�2 (roughly twice

the frequency resolution of the FFT), and q	 � 10�3 �rad/s�2.
The WFLC was initialized in the same manner as the EKF, run
with m � 8 harmonics, and experimentally set with its adap-
tive gain parameters �0 � 7 � 10�6 and �1 � 0�03 for best
performance in this and subsequent simulations.

In a second parametric simulation study, we gauged the
tolerance of each predictor to a sudden change in heart rate.
A trajectory was assembled by piecing together 30 seconds
of heart motion at 60 bpm and 10 seconds of motion at
�60 � 
HR� bpm. The second portion of the trajectory was

generated by compression/dilation of the target trajectory in
Figure 2 to obtain the desired heart rate. Like before, the com-
posite trajectory was reinterpolated to 28 Hz and corrupted
with � R � 1�30 mm noise� the measured uncertainty of the
3DUS annulus estimates (Novotny 2007). The last 10 sec-
onds were used to evaluate performance. A reasonable range
of �10 bpm � 
HR � 10 bpm was determined from clinical
RR data (Figure 10), which is discussed later.

Figure 9B shows the mean RMSEs for each predictor across
100 Monte Carlo trials. The EKF provided better predictions
than the other four methods. It was also the only method that
yielded sub-� R error for the majority of heart rate changes.
The WFLC had similar accuracies to the EKF at small 
HR
but showed slow convergence to the new heart rate for
HR �
4 bpm. As expected, the accuracy of the AR filter also ap-
proached that of the EKF for small
HR and quickly degraded
as 
HR increased. Exponential weighting of the measure-
ments allowed the filter to adjust to changes in the trajectory, as
demonstrated by the fading AR filter’s superior performance
over the AR filter for large 
HR. However, this adaptability
decreased accuracy when the trajectory did not change sig-
nificantly. Finally, the last cycle method showed performance
comparable to the fading AR filter. For this simulation all filter
parameters were chosen to be the same as in the previous sim-
ulation, with the exception of q	 � 5 � 10�3 (rad/s)2 and
� 2
	 � 1 (rad/s)2 for the EKF.

Finally, to investigate the performance of each predictor to
the more realistic case of a continuously changing heart rate,
we modulated the period of the annulus trajectory with clini-
cally obtained cardiac cycle records. Annotated ECG records
for five human subjects were selected from the MIT–BIH Nor-
mal Sinus Rhythm Database (Goldberger et al. 2000) and com-
posite mitral valve trajectories were generated in a manner
similar to the previous simulation study. Noise-corrupted mea-
surements were generated as before, with � R � 1�30 mm.
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Fig. 10. Heart rate statistics on five human subjects. A, Distribution of beat-to-beat variation� B, subject-specific mean � one
standard deviation� C, heart rate data for subject 1.

Fig. 11. Comparison of prediction error results on clinical data using last cycle, WFLC, AR filter, fading AR filter, and EKF:
A, RMSE� B, maximum absolute error.

Summary statistics for each subject are presented in Fig-
ure 10B and an example of the beat-to-beat heart rate for sub-
ject number 1 is shown in Figure 10C.

Results from this study indicate that the EKF is more suited
to tracking and prediction in this application than the other

four methods because it adjusts to rapid changes in heart rate
through explicit modeling of quasiperiodicity (Figure 11). In-
terestingly, the AR filter showed moderately better perfor-
mance than the fading AR filter. The reason for this is that
the AR filter locked on to an “average” trajectory for each
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subject while the fading AR filter continuously readjusted to
more recent noisy data. Ultimately, deviations from the “aver-
age” motion were less than the measurement noise. The last
cycle method performed worse for similar reasons: persistent
variations in heart rate and measurement noise degraded the
accuracy of the previous cycle as a predictor for the next. The
slow convergence of the WFLC to changing heart rates caused
it to have severely degraded performance.

5. Performance Evaluation in a Surgical Task

In order to quantify the amount of assistance that motion com-
pensation provides to operators working on a moving target,
we conducted two studies of user performance with the MCI
in an in vitro setting. These studies additionally provide insight
on how sensitive performance is to potential shortcomings of
a 3DUS-guided system. Specifically, user study 1 determined
the extent to which user performance is dependent on time de-
lay and random positional error. These error types are of inter-
est because both positional precision errors and computational
delays develop while generating 3DUS tracking data in real-
time. User study 2 investigated user performance with EKF
delay compensation on targets with both fixed and variable
heart rates. Subjects performed a drawing task on a moving
target using the MCI under different tracking conditions. A to-
tal of 18 test subjects (14 male and 4 female, aged 22 to 36� 8
subjects for user study 1 and 10 subjects for user study 2) vol-
untarily participated following informed consent under a pro-
tocol approved by the University Institutional Review Board.

5.1. Experimental Setup

The tests were run on a setup which emulates the intended
surgical environment. To simulate the moving mitral valve, a
target platform was mounted on a cam-driven device that repli-
cates the 1D motion of the mitral annulus centroid as measured
from the 3DUS tracking data. During trials, a paper target
was affixed to this platform to record the subject’s drawing. A
0.5 cm hard foam rubber pad between the target paper and tar-
get platform provided a small measure of compliance. In com-
bination with the pen used in the trials, the pad had a stiffness
of 4.5 N mm�1. For the purposes of this experiment, the cam
was used to simulate a heart rate of 60 bpm. Opposite the target
platform, the MCI was mounted in a gimbal allowing both an-
gular motion and translation towards and away from the target
(Figure 12). A rod was mounted on the MCI with a ballpoint
pen affixed to one end and a force sensor incorporated along
its length. The force sensor had a stiffness of 10 N mm�1. In
place of the 3DUS-based tracking and controls algorithms that
would be used in surgery, target position was directly mea-
sured at 1 kHz by a contact arm with a potentiometer attached
to the target platform. This sensing method provided the robust

Fig. 12. User trial setup. The bold arrow indicates the cyclical
motion of the simulated valve target. The tool shaft has free
rotational and sliding motion at the fixed support point.

tracking data necessary to evaluate the efficacy of MCI mitral
valve tracking and the performance of predictive filtering al-
gorithms.

5.2. User Task

Subjects were instructed to draw a circle on the moving target
platform. The circle must be drawn between two concentric
target circles with 2.29 and 2.92 cm diameters. Subjects started
at the top of the circle and proceeded in the clockwise direc-
tion. If the pen bounced off the target surface or outside the tar-
get circles, the subject was instructed to continue drawing from
the clockwise-most mark they made between the target circles.
Subjects could only draw around the circle once. They could
not go back to draw in gaps they originally missed. To pre-
vent subjects from spending an inordinate amount of time on
the task, a 25-second time limit was set. All subjects finished
every trial before the time expired.

Both dexterity and force metrics were used to evaluate sub-
ject performance. In all trials, the quality of each circle drawn
was characterized by digitally scanning the target and com-
puting the drawn line’s “angular surround” value. This value
indicates what percentage of 360 discrete 1� arc segments the
user’s line covered between the two concentric target circles.
This metric reflects positioning accuracy both in the plane of
the target and in tracking the motion of the target perpendicular
to this plane. If the user-drawn line strayed from the concentric
target circles, it did not contribute to the angular surround met-
ric and resulted in a lower score. Similarly, if the user and MCI
were unable to track the motion of the target, the pen tended
to bounce off of the target surface, producing widely spaced
marks and a low angular surround score.

The axial force applied by the subject to the target was also
recorded for 4 of the 8 test subjects in user study 1 and 9 of
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the 10 subjects in user study 2. In all 18 cases, subjects were
informed of both evaluation metrics. They were instructed that
their foremost objective was to draw continuous circles con-
forming to the angular surround metric and only secondly to
use the minimum amount of force necessary.

This task was selected to emulate the motion requirements
of placing a surgical anchor. In order to apply the surgical an-
chors developed for this procedure, the tip of the anchor driver,
consisting of 14 gauge hypodermic tubing, must be accurately
located and pressed against the target surface with a force of at
least 1.5 N (Wagner et al. 2006). This contact must be main-
tained for several seconds as the surgeon inserts the anchor,
tests whether it is deployed properly, and then releases the an-
chor. This process requires a combination of accuracy and pro-
longed contact with the surface. At the same time, forces must
be minimized so as not to cause damage to the valve.

5.3. User Study 1: Tracking with Time Delay and Positional
Error

Subjects of this study completed the task under eight different
tracking conditions. In the “solid” condition, the motion of the
MCI was rigidly locked in order to simulate a traditional, solid
endoscopic tool. For the “baseline” MCI tracking condition,
the current position of the target (RMSE � 0�015 mm) was
sent to the MCI as a position command. This baseline con-
dition resulted in a 14 ms delay. The remaining six tracking
conditions were divided into two groups of three conditions
corresponding to differing levels of the considered error.

Random positional error was simulated by the superposi-
tion of a time-varying error value with the cam position com-
mand used in the baseline tracking state. A new positional er-
ror was calculated at 8 Hz. These errors were uniformly dis-
tributed random values ([�1� 1]), multiplied by an amplitude
factor of 0.35, 0.70, or 1.05 mm.

Delay error was implemented by recording the cam track-
ing position and holding it for a specified period before send-
ing this position to the MCI as a motion command. For this set
of trials, the three levels of added delay used were 25, 35, and
45 ms. Including the MCI lag time of 14 ms, the effective delay
settings were 39, 49, and 59 ms. This range of times was cho-
sen as representative of the imaging and transmission delays
associated with real-time 3DUS-guided procedures (Novotny
et al. 2007).

5.4. User Study 2: Delay-compensated Tracking with Heart
Rate Variation and Measurement Noise

To test the EKF under conditions similar to those seen in
3DUS-guided procedures, the 1 kHz measurements of target
position were downsampled to 28 Hz and corrupted by additive
Gaussian noise ~� �0� 1�302 mm

�
(Novotny 2007). The target

was commanded to beat at 60 bpm or with a variable rate that
had additive Gaussian beat-to-beat fluctuations	 � �0� � 2

HR

�
.

Finally, a time delay of 39, 59, or 89 ms was injected into the
measurements to simulate the delays encountered with 3DUS.
Note that the 89 ms delay exceeds the delays used in user
study 1 to also account for the additional computational delays
from instrument and target segmentation in 3DUS (Novotny
2007).

Overall, the subjects of this study performed the task un-
der 10 tracking conditions, all with varying amounts of time
delay. Three tracking conditions evaluated user performance
with EKF delay compensation against 39, 59, and 89 ms time-
delayed, noise-corrupted measurements on a 60 bpm target.
For comparison, three tracking conditions were conducted on
the same set of delays but without delay compensation and
without measurement noise.

The remaining four tracking conditions evaluated user per-
formance with EKF delay compensation on a variable heart
rate target. Measurements were delayed by 89 ms and noise-
corrupted. The four levels of beat-to-beat variation were cho-
sen as �HR � �1�0� 2�0� 3�0� 4�0� bpm. These values span those
observed in the clinical RR data from Section 4.2. An illustra-
tive example of this tracking condition with �HR � 4�0 bpm
and the subsequent behavior of the EKF and the MCI is shown
in Figure 13.

5.5. Testing Protocol

Each subject test consisted of a practice period followed by the
trials corresponding to the tracking conditions of their study.
Practice was intended to familiarize the test subject with the
MCI and the evaluation task in order to bring subjects to a uni-
form level of ability and to limit learning effects during trials.
Practice was divided into three one-minute segments during
which the subject was free to experiment with using the MCI
to draw on a target paper. During the first minute of training,
the target was stationary and the tool was set in the solid con-
dition. The second minute of training involved a moving tar-
get and a solid tool. In the third and final minute, the target
was moving and the MCI was in the baseline tracking condi-
tion. Following the completion of training, each test subject
ran through the trials corresponding to the tracking conditions
of their study. The order in which these conditions were ad-
ministered was varied between trials using a balanced Latin
square to minimize the effects of between-trial carry-over and
learning on collected data.

The means of collected angular surround error metric
were compared for statistically significant differences using
the SPSS statistical analysis software package (Version 14.0,
SPSS Inc., Chicago, IL, USA). These comparisons were made
using t-tests and analysis of variance (ANOVA) with a least
significant difference (LSD) post hoc test. In all cases, sig-
nificance corresponds to p � 0�05.
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Fig. 13. Variable heart rate tracking condition (�HR � 4�0). A, Noise-corrupted, time-delayed measurements and the resulting
EKF predictions� B, MCI position and the true position of the target.

Fig. 14. Targets with median angular surround scores under solid (A), baseline (B), and 59 ms time-delayed (C) tracking condi-
tions. The baseline circle is the most continuous and round. While the solid target has more continuous lines than the time-delayed
target, it also has heavy dots and dimpling indicative of high forces.

5.6. User Study 1 Results

The results of this study indicate that the MCI can provide sig-
nificant assistance while operating on a moving target. Fig-
ure 14 shows typical target results. Mean angular surround
metric scores (Figure 15) for the baseline tracking condition
(81�9� 4�5% (mean � standard error)) were over 50% greater
than for the solid condition (53�8 � 5�0%), with clear statis-
tical significance (t �14� � 0�1987, p � 0�0009). Similarly,
axial force data indicates that subjects applied less than 50%
as much force and spent less time at elevated forces under the
baseline MCI tracking condition. Aggregating the data from
all four subjects (Figure 16), the 90th percentile for force sam-
ples using the solid tool (17.5 N) is roughly double the 90th
percentile for the baseline tracking condition (8.5 N).

A comparison of mean angular surround metric scores re-
lated to the amount of delay error (Figure 17) demonstrates de-
creases in performance ranging from 67% to 33% with increas-
ing delay ( f �3� 28� � 16�005, p � 0�001). Statistically sig-
nificant differences were indicated between the baseline con-
dition and tracking with delays of 39 ms (61�2� 1�5%), 49 ms
(56�0 � 3�7%), and 59 ms (48�8 � 3�8%). A significant dif-
ference also exists between the means of the 39 and 59 ms
tracking conditions (p � 0�02). Trend analysis indicates that
the data is well fit by a linear model (p � 0�001).

An analysis of mean angular surround metric scores related
to positional error did not demonstrate significant differences
under ANOVA analysis ( f �3� 28� � 0�638, p � 0�597). As
seen in Figure 18, the mean score under the baseline condition
differed very little from those with error amplitude factors of
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Fig. 15. Performance under baseline MCI and solid tool track-
ing conditions. Error bars indicate standard error. “*” marks
statistical significance.

Fig. 16. Histogram of applied force samples under baseline
MCI and solid tool tracking conditions. Smaller forces are con-
sistently applied under the baseline condition. 90th percentiles
are marked. The zero force bin is not shown.

Fig. 17. Performance under delay tracking conditions. Error
bars indicate standard error. Asterisks indicate statistical sig-
nificance. The dotted line shows the fitted linear model (R2 �
0�9937).

0.35 mm (81�7�3�3%), 0.70 mm (78�0�5�5%), and 1.05 mm
(74�2� 4�6%).

Fig. 18. Performance under positional error tracking condi-
tions. Error bars indicate standard error.

Fig. 19. Targets with median angular surround scores un-
der 89 ms EKF delay-compensated (A) and time-delayed (B)
tracking conditions. The delay-compensated example is more
continuous and round than the time-delayed example. The lat-
ter is fragmented and has heavy dots and dimpling that are
indicative of high forces.

5.7. User Study 2 Results

Results from this study demonstrate that the EKF is an effec-
tive approach for compensating time delay. Figure 19 shows
typical target results. Mean angular surround scores for EKF
delay-compensated tracking (Figure 20) were similar to the
baseline tracking condition from user study 1 for all three con-
ditions of 39 ms (83�1 � 3�7%), 59 ms (85�2 � 2�6%), and
89 ms (84�4 � 3�8%). Likewise, delay-compensated tracking
showed performance increases over delayed tracking ranging
from 13% to 24%. The mean angular scores for delayed track-
ing were 70�4� 4�8%, 61�1� 4�6%, and 61�0� 5�2% for 39,
59, and 89 ms delays, respectively. Statistically significant dif-
ferences at p � 0�05 were observed between the mean scores
of each delay-compensated tracking condition to each delayed
tracking condition. Delay-compensated tracking also yielded
smaller axial forces than those observed for delayed tracking
(Figure 21).
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Fig. 20. Performance with EKF delay compensation and with-
out. Error bars indicate standard error. Asterisks indicate sta-
tistical significance.

Fig. 21. Force application with and without delay compensa-
tion for delays of (A) 39 ms, (B) 59 ms, and (C) 89 ms. Smaller
forces are consistently applied under the delay-compensated
tracking conditions. The zero force bin is not shown.

An analysis of mean angular surround metric scores related
to heart rate variability did not demonstrate significant differ-
ences under ANOVA analysis ( f �3� 36� � 0�705, p � 0�555).
As seen in Figure 22, the performance against a fixed-rate tar-
get was comparable to that against a variable rate target with
�HR equal to 1�0 bpm (85�9� 2�6%), 2�0 bpm (84�1� 2�9%),
3�0 bpm (80�5� 3�6%), and 4�0 bpm (81�5� 2�5%).

Fig. 22. Performance under variable heart rate tracking condi-
tions. Error bars indicate standard error.

6. System Accuracy Under 3D Ultrasound
Guidance

Water tank experiments were conducted to measure the mo-
tion synchronization accuracy of the system under 3DUS guid-
ance. To do these, a real-time 3DUS target segmentation algo-
rithm was first incorporated into the system to provide posi-
tion measurements to the EKF. The target was set to be an
�-shaped fiducial that can be easily mounted to an annulo-
plasty ring (Figure 23B). This fiducial was specifically cho-
sen because detecting two intersecting lines is suited for an
existing real-time 3DUS segmentation algorithm based on the
modified Radon transform (Novotny 2007). This algorithm is
known to provide target position measurements with 1.30 mm
RMS accuracy under in vitro conditions. Because higher noise
may be present in vivo, we also tested this system in two other
noise conditions in which large Gaussian terms 	 � �0� � �,
� � �2�0� 3�0� mm were added to the segmented target po-
sitions. This yielded three noise conditions with overall RMS
accuracies of � R � �1�30� 3�30� 4�30� mm. We anticipate in
vivo noise levels to be less than 3.5 mm RMS.

6.1. Experimental Setup

The target and instrument were imaged by a real-time 3DUS
probe in a water tank at 28 Hz (Figure 23A). Data was
streamed from the ultrasound machine (SONOS 7500, Philips
Medical, Andover, MA) to a computer over an ethernet
connection. The stream was captured by the computer and
passed to a graphics processing unit (8800GTS, nVidia Corp,
Santa Clara, CA) where the volumes were automatically
segmented using the modified Radon transform segmenta-
tion algorithm (Novotny 2007) to obtain target position mea-
surements. The measurements were corrupted with additive
Gaussian noise (depending on the noise condition), then
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Fig. 23. (A) Setup for motion synchronization experiments and (B) X-shaped fiducial target.

passed to a third thread for EKF processing. This returned pre-
dicted target positions 82 ms in the future (68 ms from imaging
and segmentation, 14 ms from instrument lag time) and were
sent to the 1 kHz PID control loop for the robot.

Five motion synchronization trials were conducted per
noise condition. The target simulated mitral valve motion at
60 bpm with the cam-driven mechanism described in Sec-
tion 5.1. MCI position and true target position were measured
at 1 kHz with potentiometers and stored for offline process-
ing. Target measurements and EKF predictions were acquired
at the 3DUS sampling rate (28 Hz) and stored as well. Ac-
curacy evaluation was performed on the 20 s of tracking data
following 20 s of EKF initialization.

6.2. Results

Results from this experiment demonstrate that the motion
compensation system is robust to the noise levels present in
3DUS imaging. Typical data and results for each noise condi-
tion are shown in Figure 24 and overall performance is sum-
marized in Figure 25. Mean RMS accuracies for EKF predic-
tions were 1�01 � 0�02, 1�08 � 0�03, and 1�22 � 0�05 mm
for � R � �1�30� 3�30� 4�30� mm (respectively) and showed
statistically significant reductions in measurement error (p �
0�0001 for each case). Mean MCI synchronization errors were
1�15 � 0�04, 1�23 � 0�06, and 1�28 � 0�10 mm RMS for the
three noise conditions. The mean RMSE added to the system
from the MCI following the prescribed EKF trajectory was
0�14�0�01 mm and this difference was statistically significant
(p � 0�002). The RMS noise accuracy for the �-tracking al-
gorithm observed across all 15 trials was 1�30 � 0�01 mm, in
agreement with previous reports (Novotny 2007).

7. Discussion

User trials demonstrate that the motion compensation system
described here is an effective aid for surgical tasks on beating
mitral valve targets. Motion synchronization allowed users to
operate with both increased dexterity and reduced forces. In
user study 1, the angular surround scores indicative of dexter-
ity increased by approximately 50% between the solid tool and
baseline tracking conditions while the 90th percentile for force
decreased by a similar ratio. These performance gains were
maintained when increasing levels of positional error were in-
serted into the system, but disappeared when uncompensated
time delays were added to the tracking data.

The strong dependence of user performance on delay em-
phasizes that precise timing is essential for successful motion
compensation. Left uncompensated, tracking delays produced
serious errors during the rapid recoil of the target associated
with the relaxation of the left ventricle. During this motion the
valve moves towards the operator, nearly covering its entire
18 mm range of motion. Owing to the delay, the MCI con-
tinued to servo towards the oncoming target and abruptly col-
lided with it. Qualitatively, while subjects did not always no-
tice added positional error, they universally correctly identified
and expressed dismay over tracking delay.

The introduction of a predictive EKF into the system ef-
fectively removed the performance decrease associated with
tracking delays. The angular surround scores for delay-
compensated tracking conditions exceeded their respective de-
layed tracking conditions by 13% to 24%, depending on the
degree of delay. The forces applied in the delay-compensated
conditions also decreased relative to the delayed conditions,
although to a lesser extent than seen between baseline track-
ing and the solid tool. The delay-compensated scores of user
study 2 marginally exceeded the baseline scores of user study 1
by an amount that is consistent with the removal of the MCI’s
14 ms lag time (as predicted by the linear model from user
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Fig. 24. Examples of data, filtering, and motion tracking results. Left column shows measurements from 3DUS target seg-
mentation and EKF predicted target trajectories for each noise condition: (A) � R � 1�30 mm� (C) � R � 3�30 mm� and
(E) � R � 4�30 mm. Corresponding MCI and true target trajectories for each noise condition are shown in the right column:
(B) � R � 1�30 mm� (D) � R � 3�30 mm� (F) � R � 4�30 mm.

Fig. 25. EKF prediction performance and MCI tracking per-
formance over three increasing noise conditions. Error bars in-
dicate standard error.

study 1). However, caution must be taken when making a di-
rect comparison of the angular surround scores between user
studies 1 and 2 because of differing amounts of in-trial training
(8 trials in user study 1 and 10 trials in user study 2). It is rea-
sonable to conclude that EKF delay compensation restored the
MCI tracking performance to at least baseline tracking condi-

tions in cases of delay. Moreover, the performance increases
observed for delay-compensated tracking showed no degrada-
tion across the range of time delays expected for 3DUS-guided
procedures.

Surprisingly, the levels of random positional error explored
in the user studies had a negligible effect on the benefits
of MCI tracking. No statistically significant differences were
found between user performance under all three positional er-
ror conditions and the baseline condition. This result suggests
that if the timing with the valve’s sudden recoil is maintained,
the value of the MCI’s tracking is robust in the face of posi-
tional errors as high as�1 mm. This may be attributed, in part,
to compliance in the system: in the MCI’s mechanism and in
the foam pad on the target platform, which introduce compli-
ance similar in nature to that in the heart. An in vivo character-
ization of MCI performance is necessary to determine whether
compliance acts in the same way to assist operation on the mi-
tral valve annulus.

Heart rate variations in the target motion also provided
no significant degradation in user performance over the clin-
ically obtained beat-to-beat statistics (Figure 10). This is not
surprising given that the EKF estimates did not degrade on
these levels of heart rate variation. In some respects, track-
ing a variable rate target was another approach to injecting
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positional error into the system since the filter remained in
phase with the target (see, for instance, Figure 13). We antici-
pate that extremely large beat-to-beat variations will cause the
EKF to break synchronization with the target as the lineariza-
tion of the measurement function, h���t��, becomes inappro-
priate. Should more aggressive heart rate variations be encoun-
tered in future in vivo experiments, there are several potential
routes for improvement. First, heart rate variability could be
reduced through drug treatment and/or electrical pacing of the
heart. Second, following Bebek and Cavusoglu (2007), ECG
information could be used to obtain direct measurements of
heart rate. This could reduce the effect of the non-linearity
in h���t�� since, as mentioned before, perfect knowledge of
	�t� turns this into a linear estimation problem (6). Note that
the EKF, a non-linear filtering approach, would still be useful
with these measurements because they are sampled at discrete
intervals but 	�t� is continuous.

The efficacy of this motion compensation system is based
on the assumption that the motion which must be tracked is
modeled well by a 1D approximation. Previous research on
augmenting surgical procedures with robotic tracking have
focused on coronary artery bypass grafting, requiring a 3D
model of surface motion (Nakamura et al. 2001� Ortmaier et
al. 2005� Ginhoux et al. 2006� Bebek and Cavusoglu 2007).
The characterization of the mitral valve annulus motion above
shows that the fast motion of the mitral valve is primarily along
one axis� however, we also observe approximately 2 mm of
off-axis motion (Figure 2). Our preliminary tests suggest that
the passive compliance of the mitral valve annulus and the sur-
geon’s hand will assist with these minor off-axis deviations. In
addition, in vivo conditions will present slow out-of-axis mo-
tions owing to the respiration of the subject. Fortunately, sur-
geons already overcome this in current heart procedures, either
by manually compensating for the slow motion or momentar-
ily stopping the controlled ventilation to the patient.

In this work, particular emphasis has been placed on predic-
tive filtering to mitigate the dominant sources of tracking er-
ror in the system: 3DUS delay and noise. Using this approach
with the MCI in a 3DUS-guided servoing task, we achieved
synchronization accuracies of less than 1.3 mm RMS in the
presence of large measurement noise (1.3–4.3 mm RMS) and
82 ms of system delay. This is a significant improvement over
the approximately 4.6 mm RMSEs that would be incurred in
a time-delayed but otherwise noiseless tracking system. Al-
though errors in the current system are low, there is potential
for further lowering error through a more sophisticated con-
troller. Repetitive control methods are well suited for quasi-
periodic servoing tasks (Hara et al. 1988� Chew and Tomizuka
1990�Kempf et al. 1993�Horowitz 1993) and model predictive
control has shown promising results in external beating heart
tracking (Ginhoux et al. 2006� Bebek and Cavusoglu 2007).
These techniques may reduce the 0.14 mm tracking error that
is attributable to the PID controller used in the current sys-
tem.
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