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Abstract— Beating heart procedures promise significant
health benefits to patients but the fast motion of the heart
poses a serious challenge to the surgeon. Robotic motion syn-
chronization to heart movements could facilitate these surgeries,
although for intracardiac procedures this requires the develop-
ment of a predictive filter to compensate for the measurement
noise and time delay present in 3D ultrasound imaging. In this
paper, we present a quasiperiodic cardiac motion model and
apply the extended Kalman filter to estimation of its parameters
in real-time. We experimentally demonstrate high accuracy
robot tracking to heart motion using this filter.

Index Terms— Ultrasound, visual servoing, cardiac surgery

I. INTRODUCTION

Real-time 3D ultrasound (3DUS) imaging has enabled
new surgical procedures within the beating heart that are
not possible with current endoscopic technology [1]. These
procedures eliminate the need for cardiopulminary bypass
and its well documented adverse effects [2] [3]. They also
make possible the real-time evaluation of reconstructive
operations while the heart beats and continues to function.
The benefits of such procedures are clear; however, the rapid
motion of the heart poses serious challenges to the surgeon.
This is especially true of procedures involving intracardiac
structures such as the mitral valve (Fig. 2), which recoils
rapidly with every heartbeat.

A surgical robot could be of great assistance under these
conditions. With real-time image guidance, a robot could
synchronize its movements to the beating heart and the valve
would appear stationary to a surgeon. Prior work achieved
this for external heart procedures using fast, highly accurate
measurement systems and exploiting near-periodicty in the
heart motion [4] [5] [6]. Intracardiac procedures under 3DUS
guidance present new challenges due to lower accuracy and
time-delayed measurements. Servoing a robot with these
measurements directly would result in large errors that could
damage the valve and nearby delicate structures [7].

To overcome these difficulties, we have developed an
extended Kalman filter (EKF) that can accurately track and
predict the motion of the mitral valve in the presence of
noise. The EKF can be used to feed-forward the trajectory
of a cardiac target to the robot controller for synchronization.
Unlike previous work in this area, we account for imperfect
periodicity in heart motion by using a time-varying Fourier
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series model in the filter. We show that the EKF permits
accurate robot synchronization to a mitral valve target and
also adds robustness to cases where there is high variability
in heart rate. In the following, we first discuss mitral valve
annulus motion. We then describe the EKF and several other
predictive filtering methods and compare them in simulation.
A subsequent 3DUS servoing experiment in a water tank
allows us to evaluate the overall performance of the robot
system to surgical tasks like those encountered in mitral valve
annuloplasty.

II. MITRAL VALVE ANNULUS MOTION

We first highlight several features of mitral valve motion.
Previous characterizations of mitral valve motion indicate
that it is strongly constrained to translational motion along
a single axis [8] with negligble rotational movements [9].
Fig. 1A is representative of several cycles of motion along
this axis at 1 Hz, digitized from 3DUS sequences of human
mitral valves [8]. Spectral decomposition of this trajectory
(Fig. 1B) indicates a dominant motion component at 1 Hz
corresponding to the heart rate with several significant har-
monics appearing above the noise floor. This suggests that
the mitral valve trajectory may be suitably approximated by
a limited number of harmonics. Such an approach has been
attempted in the past for modeling the motion of the external
heart wall [4] [5].

III. PREDICTIVE FILTERS

A. Time-Varying Fourier Series Model with Extended
Kalman Filter

A periodic motion model is obtained by an m-order
Fourier series with a DC offset

y(t) = c +
m∑

i=1

ri sin(iωt + φi), (1)

where y(t) is the position in ultrasound coordinates, ω is the
heart rate, c is the DC offset, and ri and φi are respectively
the harmonic amplitudes and phases. Accurate modeling of

Fig. 1. Mitral Annulus Motion. A: Trajectory; B: Power Spectral Density.



Fig. 2. Mitral Valve Anatomy. The valve consists of two leaflets surrounded
by the mitral valve annulus. When functioning properly, it regulates blood
flow from the left atrium to the left ventricle. (Image source: Patrick J.
Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist)

quasiperiodicity requires a more flexible model in which the
heart rate and signal morphology can evolve over time. Using
the parameterization of [10], the trajectory can be expressed
as the following time-varying Fourier series

y(t) = c(t) +
m∑

i=1

ri(t) sin θi(t), (2)

where θi(t) = i
∫ t

0
ω(τ)dτ + φi(t) and all other parameters

are the time-varying equivalents to those in (1).
Defining the state vector x(t) , [c(t), ri(t), ω(t), θi(t)] T,

i ∈ (1, . . . ,m) and assuming that the first m + 2 state
variables and φi(t) evolve through random walk, the state
space model for this system is

x(t + ∆t) = F (∆t)x(t) + µ(t)
z(t) = h(x(t)) + ν(t),

where F (∆t) =


Im+1 0

1
∆t 1

0 2∆t 0 1
...

. . .
m∆t 1

,

h(x(t)) , y(t) from (2), and ν(t) ∼ N
(
0, σ2

R

)
and

µ(t) ∼ N (0,Q) are independent Gaussian noise terms.
Prediction with this model requires estimation of the

2m + 2 parameters in x(t); a nonlinear estimation problem
owing to the measurement function, h(x(t)). We employ the
extended Kalman filter (EKF), a nonlinear filtering method
that approximates the Kalman filter through linearization
about the current state estimate x̂(t|t). The EKF can be
computed in real-time using the following recursion

P (t + ∆t|t) = FP (t|t)F T + Q

S = σ2
R + HP (t + ∆t|t)HT

K = P (t + ∆t|t)HTS−1

x̂(t + ∆t|t + ∆t) = F x̂(t|t) + K(z(t + ∆t)− h(F x̂(t|t)))
P (t + ∆t|t + ∆t) = (I −KH)P (t + ∆t|t),

where

HT ,
(

∂h

∂x

)T
∣∣∣∣∣
x̂(t+∆t|t)=F x̂(t|t)

=



1

sin θ̂1(t + ∆t|t)
...

sin θ̂m(t + ∆t|t)
0

r̂1(t + ∆t|t) cos θ̂1(t + ∆t|t)
...

r̂m(t + ∆t|t) cos θ̂m(t + ∆t|t)


,

and P (·) , E
[
x̂(·)x̂(·)T

]
denotes the state estimate covari-

ance, whose initialization is described later in this section.
Note that the time dependencies for F , K, S, and H
have been dropped for notational convenience. The EKF as
presented here is a slight variant on the one first introduced
by Parker and Anderson [10].

To initialize this filter, we first assume that y(t) has con-
stant fundamental frequency yielding N noisy measurements
over the interval t ∈ [0, N∆t]. Observation of Fig. 1B indi-
cates that the dominant frequency peak is the fundamental
frequency of the signal (i.e., heart rate). We apply an FFT
to the data sequence with a Hamming window to obtain
the power spectrum. The maximum frequency peak within a
reasonable human heart rate range (0.5 to 2.5 Hz) is used to
initialize the estimate of ω̂0 , ω(t = N∆t).

Assuming ω̂0 to be correct, the problem can be rewrit-
ten as a linear estimation problem to obtain the harmonic
amplitudes and coefficients. Equation (1) is equivalently
reparameterized as

y(t) = c0 +
m∑

i=1

[ai sin(iω̂0t) + bi cos(iω̂0t)] . (3)

Collecting the measurements z(t), 0 ≤ t ≤ N∆t we have
z̃ = Ax̃0 + ν, where z̃ = [z(0), z(∆t), . . . , z(N∆t)] T,
x̃0 = [c0, a1, . . . , am, b1, . . . , bm] T, ν is a vector of mea-
surement noise, and

AT =



1 1 . . . 1
sin(ω̂00) sin(ω̂0∆t) . . . sin(ω̂0N∆t)

...
...

...
sin(mω̂00) sin(mω̂0∆t) . . . sin(mω̂0N∆t)
cos(ω̂00) cos(ω̂0∆t) . . . cos(ω̂0N∆t)

...
...

...
cos(mω̂00) cos(mω̂0∆t) . . . cos(mω̂0N∆t)


,

to which the least squares estimate is obtained as
ˆ̃x0 = (AT A)−1AT z̃. x̂(T |T ) is then initialized
with the values ĉ(T ) = ĉ0, ω̂(T ) = ω̂0,
r̂i(T ) = (â2

i + b̂2
i )
−1/2, and θ̂i(T ) = arctan(b̂i, âi).

The state estimate covariance is set to P (T |T ) =
diag

[
σ2

R/N, σ2
1 , σ2

1/22, . . . , σ2
1/m2, σ2

ω, 0.02, . . . , 0.02
]
. The

relationship between the amplitude uncertainties is chosen
to reflect the decreasing harmonic strength seen in



Fig. 1B, while the phase uncertainties follow those used
in [10]. Parameters σ2

1 and σ2
ω are determined through

experimentation. Last we assume that the process noise
covariance Q is diagonal with all values set to 10−4 except
for qω, the entry corresponding to ω(t).

B. Autoregressive Model with Least Squares Estimator
Another model that can be employed for mitral valve

trajectory prediction is an n-order autoregressive (AR) model

y[k] =
n∑

i=1

αiy[k − i], (4)

where αi, i ∈ {1, ..., n} are the model coefficients and y[k]
is the target position in ultrasound coordinates at time sample
k. Rather than explicitly assuming periodicity in the target
motion, this model predicates that the kth position can be
expressed as a linear combination of the previous n positions.

In order to predict the target position, the model coeffi-
cients and order must be estimated. The first can be achieved
in real-time using the recursive covariance method estimator.
Denoting z[k] = y[k]+ν[k] to be the noise-corrupted 3DUS
measurement at time sample k with ν[k] ∼ N

(
0, σ2

R

)
, this

estimator is expressed compactly in matrix form as

Z[k] = [z[k − n− 1], . . . , z[k − 1]]

R[k] = R[k − 1] + Z[k]TZ[k] (5)

α̂[k] = α̂[k − 1] + R[k]−1Z[k]T (z[k]−Zα̂[k − 1]) , (6)

with initial conditions R[0] = 0 and α̂[0] = 0. The
autoregressive model order was determined using the Akaike
Information Criteria on data collected and processed off-line,
yielding n = 30. Predicted target locations, ŷ[k], are obtained
through evaluation of (4). Additionally, the target trajectory
was interpolated from its inherent measurement rate to the
higher control rate of the robot using the Whittaker-Shannon
interpolation formula.

C. Autoregressive Model with Fading Memory Estimator
Imperfect periodicity can cause the AR model coefficients

to change over time. In this situation, it can be useful
to preferentially weight recent measurements over those in
the past – otherwise the filter becomes progressively less
responsive to new data and (6) does not update α̂ because
R[k]−1ZT → 0 as k → ∞. Exponential weighting of
previous measurements in the iterative least squares estimator
is achieved through simple modification of (5):

R[k] = fR[k − 1] + Z[k]TZ[k],

where 0 < f ≤ 1 is the so-called fading factor. Choosing
f = 1 recovers the estimator of Section III-B while choosing
f → 0 increases the speed by which previous measurements
are discounted. To distinguish between the two estimators,
we term the former the AR filter and the latter the Fading AR
filter for the remainder of this paper. As can be imagined,
reducing the contribution of previous measurements (f < 1)
can be desirable if the trajectory evolves through time;
though doing so incurs increased estimate error when the
trajectory is not time varying.

D. Simulation Studies

Three simulation studies were conducted to evaluate the
capabilities of the EKF, AR filter, and Fading AR filter to the
primary sources of random error in the system: measurement
noise and heart rate variability. For illustrative purposes, the
filters were also compared to a simpler method of using the
previous cardiac cycle trajectory for prediction of the next.
A variation of this method, termed Last Cycle here, was used
successfully in a beating heart tracking system [6].

In the first simulation, we subjected the predictors to
varying levels of measurement noise on a fixed-rate trajectory
(60 bpm). The mitral annulus trajectory of Fig. 1A was
downsampled to 28 Hz and corrupted by additive zero-mean
Gaussian noise with standard deviation 0.3 ≤ σR ≤ 3 mm.
Each predictor was then given 30 sec of data to initialize
and performance was judged for the following 10 sec on
1-sample ahead predictions.

The RMS errors for each predictor averaged across 100
monte-carlo trials are shown in Fig. 3A. The EKF, AR, and
Fading AR filtering methods clearly give higher accuracy
predictions than the inherent uncertainty of the measure-
ments, with the EKF doing the best. As expected, the
Last Cycle method had error statistics equal to σR since
it attempts no smoothing. It should be noted that the Fading
AR filter was tuned with f = 0.985 in order to achieve errors
that are approximately equal to σR. This setting represents
the lowest reasonable value for the Fading AR filter since a
value lower would give performance below the Last Cycle
method. The EKF was run with m = 8 harmonics, N = 280
initialization points (10 sec), σ2

1 = 2, σ2
ω = 0.11 (roughly

twice the frequency resolution of the FFT), and qω = 10−3.
In a second parametric simulation study, we gauged the

tolerance of each predictor to a sudden change in heart rate.
A trajectory was assembled by piecing together 30 sec of
heart motion at 60 bpm and 10 sec of motion at (60 +
∆HR) bpm. The second portion of the trajectory was gen-
erated by compression/dilation of the trajectory in Fig. 1A
to obtain the desired heart rate. Like before, the composite
trajectory was downsampled to 28 Hz and corrupted with
σR = 1.3 mm noise (the measured uncertainty of the 3DUS
annulus estimates [7]) and the last 10 sec were used to
evaluate performance. A reasonable range of −10 bpm ≤
∆HR ≤ 10 bpm was determined from clinical data (Fig. 4),
which is discussed later.

Fig. 3B shows the mean RMS errors for each predictor
across 100 monte-carlo trials. The EKF provided better
predictions than the other three methods. It was also the
only method that yielded sub-σR error for the majority of
heart rate changes. As expected, the accuracy of the AR
filter approached that of the EKF for small ∆HR and quickly
degraded as ∆HR increased. Exponential weighting of the
measurements allowed the filter to adjust to changes in the
trajectory, as demonstrated by the Fading AR filter’s superior
performance over the AR filter for large ∆HR. However,
this adaptability lessened accuracy when the trajectory did
not change significantly. Finally, the Last Cycle method
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Fig. 3. RMS prediction error results for parametric simulation studies. A:
Error for varying measurement noise; B: Error for step heart rate changes.

Subject Heart Rate Stats [bpm]
No. Mean Std. Range
1 57.2 3.4 49.9 – 68.6
2 65.9 1.7 63.5 – 68.6
3 61.0 4.0 55.3 – 66.8
4 55.0 2.6 50.5 – 58.2
5 71.0 2.2 67.4 – 74.6

Fig. 4. Summary of Heart Rate Statistics on Five Human Subjects

showed performance comparable to the Fading AR filter.
For this simulation all filter parameters were chosen the
same as in the previous simulation, with the exception of
qω = 5× 10−3 (rad/s)2 and σ2

ω = 1 (rad/s)2 for the EKF.
Finally, to investigate the performance of each predictor

to the more realistic case of a continuously changing heart
rate, we modulated the period of the annulus trajectory with
clinically-obtained cardiac cycle records. Annotated ECG
records for five human subjects were selected from the
MIT-BIH Normal Sinus Rhythm Database [11] and com-
posite mitral valve trajectories were generated in a manner
similar to the previous simulation study. Noise-corrupted
measurements were generated as before, with σR = 1.3 mm.
Summary statistics for each subject are presented in Fig. 4
and an example of the beat-to-beat heart rate for subject
number 1 is shown in Fig. 7d.

Results from this study suggest that the EKF is more
suited to tracking and prediction in this application than the
other three methods (Table I). Interestingly, the AR filter
showed moderately better performance than the Fading AR
filter. The reason for this is that the AR filter locked on
to an “average” trajectory for each subject while the Fad-
ing AR filter continuously readjusted to more recent noisy
data. Ultimately, deviations from the “average” motion were
less than the measurement noise. The Last Cycle method
performed worse for similar reasons: persistent variations in
heart rate and measurement noise degraded the accuracy of
the previous cycle as a predictor for the next.

TABLE I
SIMULATED PREDICTION ERROR ON CLINICAL DATA

Subject RMS (Max) Prediction Error [mm]
No. EKF AR Fading AR Last Cycle
1 0.83 (4.92) 1.48 (5.13) 1.69 (6.45) 1.99 (9.95)
2 0.88 (5.08) 1.66 (6.19) 1.63 (6.65) 1.87 (9.00)
3 0.88 (5.44) 1.98 (8.27) 2.03 (8.27) 2.24 (11.77)
4 1.33 (6.36) 1.81 (6.70) 2.07 (6.85) 2.72 (13.50)
5 0.88 (5.53) 1.58 (6.17) 1.88 (7.54) 2.13 (9.96)

Mean 0.99 (5.60) 1.76 (6.83) 1.90 (7.33) 2.24 (11.06)

Fig. 5. (A) Tank experiments setup. The ultrasound probe images a
instrument and target submerged in a water tank. The instrument is attached
to a robot and passes through a port. During the trials, the target (B) moves
left to right, simulating the 1D motion of the mitral valve.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

The usefulness of the EKF, AR, and Fading AR filters to a
3DUS servoing task was tested in a water tank. Details of the
setup can be found in [7]. Briefly, a surgical instrument was
attached to the end of a small robot (Phantom 1.5, Sens-
able Technologies, Woburn, MA), which was commanded
to maintain a constant offset from the instrument tip to
the target position. A sliding ball joint approximated an
instrument passing through a port in the heart wall. The target
and instrument were both imaged by a real-time 3DUS probe
in a water tank at 28 Hz (Fig. 5).

Data was streamed from the ultrasound machine (SONOS
7500, Philips Medical, Andover, MA) to a PC over an ether-
net connection. The data stream was captured on the target
PC and passed to a graphics processing unit (8800GTS,
nVidia Corp, Santa Clara, CA) where it was automatically
segmented using the modified Radon transform segmentation
algorithms from [12]. Target position measurements were
passed to a third thread for filtering and returned predicted
target positions 132 ms in the future (68 ms from imaging
and segmentation, 64 ms from robot lag time). Simultane-
ously, the instrument and target measurements were used
to automatically register the robot and imaging coordinate
frames [7]. These were then sent to the 1 kHz PD control
loop for the robot (KP = 0.16 N

mm , KD = 0.002 N
mm/s ).

The system was tested against both fixed and variable heart
rates to assess the performance of the EKF, AR filter, and
Fading AR filter. For fixed-rate experiments, the target speed
corresponded to a heart rate of 60 bpm. In variable heart rate
experiments, the target motion was driven by the clinical RR



(a) Extended Kalman Filter (b) Autoregressive Filter

(c) Fading Autoregressive Filter (d) No Predictive Filter

Fig. 6. Results of robot tracking at 60 bpm. Only one dimension of the
3D positions is shown because the movement is 1D.

TABLE II
ROBOT TRACKING ERROR ON A FIXED-RATE TARGET (60 BPM)

Filter Type RMS Error [mm] Max Error [mm]
EKF 0.97 3.26
AR 1.15 3.91

Fading AR 1.62 7.60
None 4.57 12.36

interval data from the five subjects described in Section III-
D. Each filter used the same parameters as those in the
simulation studies of Section III-D. The target was attached
to a cam that mimicked mitral valve movements [8] and
ground truth was measured with an angular potentiometer.
The robot tip position was recorded using the joint encoders
of the robot. Both of these measurements were made at 1 kHz
and stored to a data file for analysis.

B. Experimental Results

Fixed-rate robot tracking with feed-forward target predic-
tion provided RMS errors under 2 mm, as shown in Fig. 6
and Table II. In agreement with our simulations, the EKF
yielded improved results over both the AR and Fading AR
filters, with each having RMS errors of 0.97, 1.15, and
1.62 mm, respectively. Likewise, as expected for a fixed-
rate target, the AR filter outperformed the Fading AR filter.
To illustrate the importance of compensating system delays
with a predictive filter, robot tracking performance using
raw measurements are also given. Qualitative observation of
Fig. 6d indicates that delays in the system are the dominant
source of error. Left uncompensated, they cause 4.57 mm of
RMS error (Table II).

The EKF significantly outperformed the other filters
against a target with heart rate variability (Table III). Indeed,
it was the only filter to consistently yield RMS errors
under 2 mm. While the introduction of variable heart cycles
decreased performance appreciably for all filters, the EKF is
noticeably more robust to this error source than the AR and
Fading AR filters. This is apparent in Fig. 7, a representative
example of robot synchronization for subject number 1.

(a) Extended Kalman Filter (b) Autoregressive Filter

(c) Fading Autoregressive Filter (d) Subject Heart Rate

Fig. 7. (a-c) Robot tracking example on a variable heart rate target derived
from subject 1. Only one dimension of the 3D positions is shown because
the movement is 1D. (d) Heart rate data for subject 1.

TABLE III
ROBOT TRACKING ERROR ON VARIABLE-RATE CLINICAL DATA

Subject RMS (Max) Tracking Error [mm]
No. EKF AR Fading AR
1 1.30 (6.98) 2.18 (8.12) 2.21 (8.58)
2 1.50 (7.30) 1.92 (7.47) 1.79 (6.70)
3 1.51 (5.53) 2.22 (9.52) 2.27 (9.68)
4 1.29 (4.56) 1.68 (6.08) 1.87 (8.78)
5 1.53 (6.80) 2.06 (9.05) 2.26 (8.78)

Mean 1.43 (6.23) 2.01 (8.05) 2.08 (8.50)

Averaged across all five patients, the EKF provided ≈ 30%
less error than the other two filters.

V. DISCUSSION

Robot-assisted beating intracardiac surgery guided by 3D
ultrasound faces two major obstacles: time delay and low
imaging accuracy. In this paper, we employed an extended
Kalman filter (EKF) that provided high accuracy predictions
of heart motion in the presence of both. The EKF model was
selected to directly treat quasiperiodicity and this enabled
superior tracking performance compared to existing methods
with clinically-observed heart rate patterns. Using the EKF
in experimental trials, we demonstrated that ultrasound-based
visual servoing can be used to accurately synchronize a
surgical instrument to a rapidly moving target mimicking
the motion of the mitral valve.

Previous work on coronary artery bypass graft (CABG)
procedures obtained similar or higher accuracy results than
here for 3D synchronization to the external heart wall. Using
a high speed camera operating at 500 Hz, Ginhoux et al.
applied an adaptive filter bank in a generalized predictive
controller to obtain robot tracking errors of ≈1.5 mm in
a porcine heart [5]. In principle, their filtering approach is
equivalent to the AR and Fading AR filters described in this
work and has their attendant assumption of a fixed heart
rate. In similar but independent work, Bebek and Cavusoglu
demonstrated <1 mm robot tracking error by incorporating
ECG [6] into a variation of the Last Cycle method discussed
here. Their system used sonomicrometry sensors sutured to



the surface of a porcine heart, sampling at 257 Hz with
≈250µm measurement accuracy. These researchers estimate
that beating heart CABG requires robot tracking accuracies
of ≈2 mm in order to safely manipulate blood vessels.

Mitral valve repair shares many of the challenges faced
in CABG; however, it assumes additional challenges by
being a procedure inside the heart. A major consideration
is the need for a real-time imaging technology that can
image through blood. We adopt 3D ultrasound because it
is currently the only technology that has these capabilities;
endoscopic systems are obscured by blood, CT and MRI are
not yet able to image at the speeds necessary for beating
heart surgery, and attached sensors (i.e., sonomicrometry
crystals) are unlikely to be placed reliably inside a moving
heart. 3D ultrasound also overcomes the difficulties in spatial
perception experienced with traditional 2D ultrasound [13].
For all of its advantages, 3D ultrasound has poor accuracy
(≈1 mm) and a relatively low sampling frequency (28 Hz).
The acquisition and processing of 3D ultrasound volumes
also introduces a time delay of 68 ms into the system, during
which time the annulus can recoil 15 mm [7].

The EKF developed in this paper enabled us to overcome
the apparent shortcomings of 3D ultrasound imaging. The
tank trials presented here demonstrated RMS synchronization
errors of ≈1.5 mm for trajectories derived from clinical heart
rate variability data and 0.97 mm for a fixed-rate trajectory.
However, additional errors are expected for in vivo conditions
due to ultrasound probe motion and lowered imaging resolu-
tion in blood and through tissue. Future surgical experiments
will be conducted open-chest on subjects under artificial
ventilation. We expect that the out-of-axis motion due to
respiration can be compensated by mounting the robot to
a translational stage that is controlled to follow the forced-
respiration of the subject. We anticipate that accuracies of
≈2 mm will be needed for mitral valve repair, although
the requirements should be eased from those in CABG
because small, delicate structures are not handled. Future
work must determine reasonable tracking accuracies for such
procedures. Likewise, the influence of respiratory motion
on the EKF and the verisimilitude of our cam-driven heart
motion emulator must be addressed.

Should better tracking performance be needed, there are
several potential routes for improvement. First, heart rate
variability could be reduced through drug treatment or
electrical pacing of the heart. Second, following [6], ECG
information could be used to obtain direct measurements of
heart rate. This could reduce the effect of the nonlinearity
in h(x(t)) since, as mentioned before, perfect knowledge of
ω(t) turns this into a linear estimation problem (3). Note that
the EKF, a nonlinear filter, would still be useful with these
measurements because they are sampled at discrete intervals
but ω(t) is continuous. Finally, robot tracking error may be
reduced through the use of a model predictive controller, as
done in [5] [6]. A comparison of simulated and experimental
results in this paper suggest that robot control accounts for
≈0.5 mm of error.

In closing, we note that while the EKF presented here

was chosen for 3D ultrasound-guided mitral valve repair, it
is not limited to that application. The EKF proved to be
a superior predictor over those presuming a fixed rate (AR
and Fading AR filters) or self-similarity between consecutive
cycles (Last Cycle method) for every trial in this study.
Averaged across the five clinically-derived data sets, the EKF
provided ≈30% less error than other filters. We reasonably
expect that the EKF could be applied to other applications
of motion compensation. For instance, the EKF could be
applied to external heart procedures where, in addition to
increasing robustness to heart rate fluctuations and noise, it
could mitigate errors caused by unexpected heart beats. Such
events can occur when instruments contact the heart.
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