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Task Performance is Prioritized Over

Energy Reduction
Ravi Balasubramanian*, Member, IEEE, Robert D. Howe, Senior Member, IEEE, and Yoky

Matsuoka, Member, IEEE.

Abstract—The objective of this study was to characterize
the temporal relationship between hand stiffness and task
performance during adaptation to a brief contact task that
required precision at the time of contact. The experiment
required subjects to control the vertical position of a paddle
on a computer display by grasping a robot’s instrumented
handle, with the goal of intercepting a virtual ball within
1 mm from the paddle center. A force transient was
applied to the hand immediately after the ball-paddle
impact to estimate the intrinsic hand impedance. There
were two main results: (1) More trials were required for
a brief contact task to find a low-energy strategy when
compared with tasks that received feedback through the
entire movement trajectory. (2) When the whole course of
adaptation is long for brief contact tasks, viscoelastic forces
were increased to achieve the task goal before the energy
reduction initiated. Also, as the accuracy requirement
was increased by changing the gain between handle and
paddle motion through visual amplification, peak stiffness
increased and occurred later, indicating that higher energy
strategies are used for longer when the task’s accuracy
requirements were increased. These results indicated that
task performance may be prioritized over energy reduction
for a brief contact task.

I. INTRODUCTION

There are many tasks that require positional precision.

Some tasks require accuracy for the whole movement

path, while others require accuracy only at a particular

point of the movement. For example, when hitting a

volley in tennis, the path followed by the arm before

the event is not as critical as the precision of position

at the point of contact with the ball [36]. It has been

shown that any task learning requires the central nervous

system to identify the input–output characteristics of the

motor system for that specific task [8, 21, 35]. Thus, in

the tennis volleying example, the central nervous system

has to learn to carefully modulate racquet position and

stiffness to control ball trajectory after impact.
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In studying how the central nervous system learns

tasks, it has been shown that viscoelastic forces through

cocontraction at high energy cost are used early on in

the learning process beyond what the task itself requires.

With practice, the excess viscoelastic forces and the

performance error are reduced over time to find a low-

energy strategy [30]. In some cases, it was noticed that

limb stiffness was initially increased and then decreased

over the course of learning a task [10], while error

reduction followed an exponential decay [6, 7, 9, 11, 17].

The tasks used in the above studies required precision

for the entire movement path while the subjects re-

ceived feedback during the entire movement. In this

study, we focused on a task that required positional

precision only at a brief contact point in a movement

without any feedback on the path followed to the goal.

Such brief-contact tasks include drumming [15] and ball

catching [23] which have been explored focusing on the

role of impedance modulation to overcome bandwidth

limitation. However, the time-history profiles of hand

stiffness and task error during learning a brief-contact

task have not been studied. Specifically, we were in-

terested in understanding how the learning mechanisms

changed when position accuracy was required only at

a brief contact point when compared to the entire path

and also if the learning process was longer. In order to

answer these questions, the time-history profiles of hand

stiffness and task error were evaluated simultaneously

during a precision task with a brief contact. Portions of

this work have been presented in [27].

II. MATERIALS AND METHODS

A. Apparatus

A high-fidelity force-feedback haptic interface, the

PHANTOM1, was used to estimate hand impedance (see

Fig. 1a). The robot’s standard stylus interface was re-

placed at the distal end with an instrumented handle

mounted on a simple universal joint to allow natural hand

position. The PHANTOM robot used in this experiment

thus had three actuated rotational freedoms, two passive

rotational freedoms at the universal joint, and three

translational degrees of force feedback (peak forces up

to 8.5 N could be exerted in any direction inside a 20 cm

diameter workspace). Typical end-effector stiffness is

3.5 N/mm and inertia 75 g.

1Sensable Technologies Corporation; Premium Model 1.5
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Fig. 1. The experimental set up includes (a) the Phantom haptic interface, an instrumented handle, and (b) a visual display showing the
ball-paddle workspace. (c) The time profiles of force and paddle acceleration, velocity, and position during a typical trial. (d) A typical system
identification plot showing measured (thin red line) and estimated forces (thick black line).

The instrumented handle included a piezoelectric ac-

celerometer2 inside the handle and a piezoelectric force

sensor3 between the robot end point and the handle. The

signals from these sensors were sampled at 10 kHz. The

handle weighed 59 g, of which 20 g was distal to the

force sensor.

B. Task and Protocol

The task was to control the vertical position of a

paddle displayed on a computer screen by grasping and

moving the handle attached to the PHANTOM’s distal

end through wrist flexion and extension movements (see

Fig.1b). The subject sat two feet in front of the computer

monitor, and the 14 mm tall paddle was centered in a

workspace limited by two vertical walls 60 mm apart.

For each trial, a 4 mm diameter ball appeared at a

random location on the left edge of the workspace and

moved to the right at 30 mm/sec. Any effect from the

subject’s anticipation of the ball appearing was mini-

mized by randomizing the time that it took for the next

ball to appear (between 1–2 seconds).

The subject is instructed to intercept the ball at the

center of the paddle by using the handle to move the

2Kistler Instrument Corporation; model 8630B50, sensitivity 101.5
mV/g.

3Kistler Instrument Corporation; model 9712A5, sensitivity 856
mV/lbf.

paddle vertically. If the contact between the ball and the

paddle was within 1 mm of the paddle center, the ball

turned green to indicate a successful action. If the ball

did not contact the paddle within 1 mm of its center, the

ball turned red to indicate failure. The duration between

two tasks varied between five and six seconds.

Task performance was measured using the absolute

vertical distance between the paddle’s center point and

the ball contact point (termed error). We also use “error

at hand”, obtained by dividing the visual error by the

gain, to measure the error at the subject’s hand. In both

measures, smaller distance indicated better performance.

To simulate ball contact, the robot delivered an impulse

to the handle after the ball impacted the paddle (50 ms

after position error measurement). The subject’s response

to this impulse was used to estimate hand stiffness (see

section II-C for more details). Note that the expectation

of the impulse would have influenced the effective hand

impedance when compared to the case where there is no

disturbance. However, since the impulse was constant

across trials, the effect on hand impedance was similar

across trials, and the protocol measured only the relative

change in hand impedance with change in accuracy

requirement.

The subjects were instructed to avoid moving the

paddle horizontally to hit the ball, but simply to align the
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vertical position with the ball and wait for the ball to hit

the paddle. Each trial was also checked to confirm that

the subject only moved the paddle vertically and that the

subject’s hand returned to the original horizontal loca-

tion. In addition, the subjects’s forearms were secured

with a Velcro strap to the modified arm of the chair they

sat on to eliminate motion at joints more distal to the

handle than the wrist. The range of wrist motion was

restricted using two visual markers placed 2 cm above

and below the paddle on the monitor, corresponding to

approximately half the wrist joint range at unity gain.

The ball appeared only between these markers.

While previous work [10] has used “error at hand”

to explore limb stiffness modulation, this study controls

accuracy through visual amplification. Task accuracy

requirement was modified by varying the gain between

the handle’s motion and the paddle’s motion. Our exper-

iment used gains of 1x, 8x, 16x, and 24x. For example,

when the gain was set to 1x, the virtual paddle moved

the same distance on the computer screen that the handle

moved in the subject’s wrist. However, when the gain

was set to 8, the paddle moved eight times the physical

distance traveled by the handle. Thus, compared to

gain 1, the subject wrist had to move smaller distances

with gain 8. Increasing gains had the effect of increasing

the accuracy required for the positioning task, and the

visual display had sufficient resolution to be unaffected

by gain changes.

Three groups containing six right-handed subjects

each participated in the study, and each group underwent

two sets of 250 trials each. Each group experienced

gain 1x in set 1, and, after a three-minute break, ex-

perienced an increased gain (one of 8x, 16x, and 24x)

in set 2. During the break, the subjects were informed

that the sensitivity of the paddle movement might have

changed, but were not told what the gain would be.

Since each subject performed trials with gain 1x and a

higher gain, the data from the gain 1x trials was used to

normalize the subject’s performance at the higher gain.

C. System identification technique

In the past, several limb-impedance identification

strategies have been developed [1, 19, 20, 24, 25]. This

paper estimated hand impedance using an impulse-based

identification technique that allows instant parameter

identification from one trial. When the ball contacted the

paddle, the robot delivered a 3 N force impulse lasting

25 ms at its distal end (see Fig. 1c). The frequency of

the impulse was constant across subjects and accuracy

requirements. The time course of the impulse waveform

was designed to avoid exciting the dominant vibration

modes of the robot [16] and to provide a motion profile

that facilitated the impedance estimation algorithm. The

force was applied vertically to identify hand impedance

in the direction of the hand’s motion, rather than in

the horizontal direction that the ball moved. The paddle

was free to move in any direction in the workspace,

and the impulse was the only force the handle applied.

Since the impulse was applied 50 ms after position error

measurement, the impulse did not affect the position

error measurement.

The force direction was randomized between upward

and downward to minimize bias from a voluntary or

conditioned response. Some subjects missed hitting the

ball entirely on the first trial in a session, and the

impedance analysis was not conducted on the missed

trial. No subjects missed beyond the first trial, and the

adaptation trend was recorded without excluding or miss-

ing a trial for 250 consecutive trials. Note that friction

forces were negligible (magnitude less than 0.04 N). The

visual scene updated at 30 Hz, and the force command

updated at 1 kHz.

The impedance estimation technique modeled hand

impedance as a piecewise-linear, second-order mechan-

ical system given by

f(t) = mẍ(t) + bẋ(t) + k(x(t) − x0), (1)

where f(t) represented the external force on the

hand (from the robot handle) at time t, x(t) the hand

position, and x0 the rest position of the spring element.

The symbol ẋ(t) represented hand velocity and ẍ(t)
hand acceleration. The effective mass m, damping b, and

stiffness k are assumed to be constant for the duration

of the impulse. This linear approximation is accurate

for a fixed point over short durations [20]. Rather than

identify the impedance of individual joints, this approach

represented the hand-wrist combine in terms of lumped

elements to focus on the impedance strategy employed

during the task [4, 14, 28]. Note that the wrist-hand

stiffness can be modulated by stiffness of the fingers

which held the handle.

Starting from the onset of the force perturbation,

the sensors in the PHANTOM handle provided hand

acceleration measurements (ẍ(t)) and force measure-

ments (f(t)) at 10 kHz for 40 msec. Velocity and

position measurements (sub-micron accuracy) were com-

puted by integrating the acceleration signal. In each trial,

the paddle’s rest position was set equal to the hand’s

position at the start of the force transient. We estimated

the parameters m, b, and k using least squared fits of (1)

to the four hundred data points for each trial (see Fig. 1d

for a typical result).

The parameter estimation technique was validated in

the anticipated range of hand impedance by estimating

the impedances of well-characterized metal springs and

masses. Instead of the subject holding the robot handle,

the springs and masses were coupled to the robot’s

handle. The mean errors in estimated mass and stiff-

ness were less than 1%, and the maximum errors in a

single trial were 8.4% for mass and 3.7% for stiffness.

Overall, there was excellent agreement (mean r2 value

was 0.988) between the measured force and the esti-

mated force (back calculated using the estimated param-

eters m, b, and k and the measured motion). Although

the inertia and damping parameters were estimated as
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part of the system identification technique, the remainder

of this study focused on stiffness modulation for two

reasons. First, this study focused on the relationship

between task performance and energy expenditure, and

stiffness is directly correlated with energy expenditure.

Second, the coupling between stiffness and damping

has been shown to be weak in goal-directed voluntary

movements and damping is modulated to a less extent

than stiffness [3, 5, 29, 32].

In order to compare the time profiles of stiffness

and task error across subjects and conditions, each set

was normalized by its steady-state stiffness and error

measurements. Thus, normalized stiffness K1(t) and

error E1(t) were defined as follows:

K1(t) = K(t)/Kss, E1(t) = E(t)/Ess, (2)

where K(t) was the trial’s stiffness, Kss the set’s steady-

state stiffness, E(t) the trial’s error, and ess the set’s

steady-state error.

To analyze of how a subject changed stiffness strate-

gies and performance varied when compared with the

subject’s performance at gain 1x, data from higher

gain trials was normalized using steady-state stiffness

and error measurements from the gain 1x trials. Thus,

normalized stiffness K2(t) modulation and error E2(t)
were defined as follows:

K2(t) = K(t)/Kss,1x, E2(t) = E(t)/Ess,1x. (3)

where Kss,1x was the steady-state stiffness with gain 1x

and Ess,1x the steady-state error with gain 1x.

The variation in normalized stiffness (defined in (2)

and (3)) with learning for each set was modeled as

a double exponential curve to capture both the initial

rise and the eventual decay of a set’s stiffness esti-

mates (similar to [10] where exponential curves were

fitted to electromyography data). The least-square non-

linear fitted curve for each gain (1, 8, 16, or 24) had the

form:

Kfit = ckr(1 − e−(t−1)/rkr ) − ckd(1 − e−(t−1)/rkd)

+cko, (4)

where ckr represented the constant multiplier of the

initial exponential rise, ckd the constant multiplier of the

eventual exponential decay, rkr the time-constant of ex-

ponential rise, and rkd the time-constant of exponential

decay. The symbol t represented the trial number, and

cko the stiffness at trial t = 1.

Task performance was measured using error in posi-

tioning the paddle. The variation in normalized error (de-

fined in (2) and (3)) in each set was modeled as an

exponential decay with the form:

Efit = ced(e
−(t−1)/red) + ceo, (5)

where ced represented the constant multiplier of the

exponential decay, cer the constant multiplier of the

exponential rise, red the time constant for exponential

decay, rer the time constant for exponential rise, and

ceo + ced the error at trial t = 1. All significance

tests were conducted using t-tests at p = 0.05, and

variation was represented by 95% confidence intervals

and standard error.

Note that this experiment estimated stiffness during

the static phase that followed vertical movements. [13]

found that stiffness was correlated between the active

motion phase and the immediate post-motion phase of a

positioning task. While we did not measure the stiffness

during the active motion phase, we expect it to be

correlated to the post-motion phase stiffness because

higher gains caused more positional inaccuracies in both

active motion and post-motion phases.

III. RESULTS

A. Stiffness and Error Trends During Adaptation

The normalized stiffness K1(t) and error E1(t) mea-

surements for all conditions along with a fitted double-

exponential curves are plotted in Fig. 2. The normalized

data from different sets could be combined, given that

fewer than ten percent of the 250 trials in a set were

statistically different across gains. The fitted curve for

stiffness had correlation coefficient 0.93, and the fitted

curve for error had correlation coefficient 0.79. The trial

at which normalized error E1(t) reached within 95% of

the steady-state value (29±5 (rounded)) was close to the

normalized stiffness K1(t) peak trial (36±4 (rounded)).

The normalized stiffness curve revealed that peak

stiffness was significantly greater than trial 1 stiff-

ness (p < 10−6), stiffness peak value was signifi-

cantly greater than steady-state stiffness (p < 10−5),

and steady-state stiffness was significantly greater than

trial 1 stiffness (p = 0.002). In each set, the stiffness

increase (time constant 27.1± 4.5) was quicker than the

stiffness decrease (time constant 67.9 ± 6.8), and the

rise time-constant was significantly less than the decay

time-constant (p < 10−5). However, the stiffness adap-

tation time constants were larger than those reported for

adaptation to tasks that required precision for the entire

movement path (mean stiffness rise time-constants range

between 1 and 6, and mean decay time-constants range

between 17 and 30 [10]). Stiffness fluctuated (shown

as confidence intervals in Fig. 2), but it was not corre-

lated with unsigned wrist angles (correlation coefficient

0.15±0.03). Interestingly, stiffness also did not correlate

with the task performance of the previous trial (average

absolute cross-correlation for any set was 0.11 ± 0.01),

in contrast to [30].

The normalized error curve revealed that steady-state

error was significantly smaller than trial 1 error (p <
10−5). During adaptation, the error decreased even more

rapidly (time constant 15.5 ± 5.8) than the stiffness

increase (p = 0.06).

B. Variation of Stiffness and Error Trends with Accuracy

Requirement

Fig. 3 shows the normalized stiffness K2(t) adap-

tation and error E2(t) reduction curves of gains 8x,
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Fig. 2. (a) Normalized stiffness K1(t) and (b) normalized error E1(t)
during a set of trials (n = 18). The bold solid curves (red) are functions
fitted to the moving average plots (dashed blue line, window size =
10). The green regions depict confidence intervals.

16x, and 24x. Statistical analysis of normalized stiff-

ness K2(t) across the conditions (see Table I) showed

that peak stiffness with gain 1x was significantly less

than peak stiffness with gains 16x and 24x. Also, steady-

state stiffness with gain 1x was statistically different

from steady-state stiffness with gains 8x, 16x and 24x.

The peak-stiffness trial occurred later during adaptation

as accuracy requirement increased (see Table I). In

particular, the shift was significant in the cases of gain 1x

versus 16x and 24x and gains 8x versus 24x.

Statistical analysis of normalized error E2(t) showed

that the steady-state errors increased as gain in-

creased (see Table II; steady-state absolute error for

gain 1x: 0.72 ± 0.03 mm). However, the error at

hand (different from the visual error) was statistically

smaller as accuracy requirement increased, and only the

difference between error-at-hand for gains 16x and 24x

was not statistically different. The trial at which error

reached steady-state also appeared to occur later as

accuracy requirement increased, as indicated by the fitted

curves and the normalized data, but the shifts were not

significant. Finally, error reached steady-state before the

trial that stiffness peaked (8x: p = 0.09, 16x and 24x:

p < 0.05).

Fig. 4. Integration of viscoelasticity-dependent and energy-reduction
control strategies during adaptation:(a) Stiffness adaptation and error
reduction and (b) Contribution of viscoelasticity-dependent control and
energy reduction-based control.

IV. DISCUSSION

The non-monotonic stiffness variation observed in

this study is similar to the stiffness variation observed

in [10, 13], and several studies have reported an expo-

nential decay of error [7, 9, 17, 30]. What has not been

observed previously was the temporal relationship be-

tween stiffness change and task performance error during

a positional accuracy task. Specifically, it was observed

in this study that the error reaching steady state triggered

stiffness to stop increasing (as the stiffness peak occurred

several trials after error plateaued) changing the nature

of adaptation thereon. Thus, the adaptation time history

was classified into two phases using this moment as the

transition point: phase 1 occurred for the first several

minutes where stiffness (or more generally viscoelastic

forces) rapidly increased as error was rapidly decreased

toward the task requirement level; and phase 2 occurred

for a longer duration where stiffness decreased slowly

while the error remained level.

The existence of phase 1 played an important role

in the adaptation process. During phase 1, the subject

gained practice with the task. However, energy reduction

was not given higher priority over task performance.

Phase 2, however, was a period where energy reduction

was the primary goal, even while error was not reduced

further. These observations are consistent with the hy-

pothesis of adaptive internal model-based control [12,

21, 35], where subjects build internal or feedforward

models to improve task performance while reducing

energy consumption. While it was unclear if task per-

formance was prioritized over energy reduction (through

reduced viscoelastic contribution) in [30] (since per-

formance improvement and energy reduction occurred

simultaneously from the beginning of the session), a

modified learning process where phase 1 was primarily

an error-reduction phase (with little priority given to

energy reduction) was inferred in this study (see Fig. 4).

This can be inferred from the increased involvement of

stiffness-based control and poor correlation between the

task success or failure and next-trial stiffness.
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Fig. 3. (a), (b), (c) Normalized stiffness K2(t) normalized by steady-state stiffness at gain 1x. (d), (e), (f) Error estimates E2(t) normalized
by steady-state stiffness at gain 1x. Each plot has solid (red) lines which represent fitted curves and dotted (blue) lines which represent moving
average (window size = 10) plots. Green regions depict confidence intervals (n = 6).

TABLE I
NORMALIZED STIFFNESS K2 VARIATION AS A FUNCTION OF ACCURACY REQUIREMENT

Gain Correlation Peak Trial Peak Steady State

Coefficient Fitted curve Data (rounded) Value Value

1x 0.92 32 25 (5)fg 1.37 (0.14)ab 1.00 (0)cde

8x 0.75 36 34 (5)h 1.9 (0.42) 1.63 (0.54)c

16x 0.95 41 45 (7)f 2.5 (0.46)a 1.95 (0.32)d

24x 0.94 64 57 (4)gh 2.35 (0.36)b 2.07 (0.29)e

Superscripts a–h denote significant difference.

Numbers in brackets are standard errors.

TABLE II
NORMALIZED ERROR E2 VARIATION AS A FUNCTION OF ACCURACY REQUIREMENT

Gain Correlation Reach Steady-State Trial Steady State

Coefficient Fitted Curve Data Value (Visual) Value (Hand)

1x 0.73 — — 1.00 (0.00)pij 1 (0.00)klm

8x 0.65 11 22 (7) 1.19 (0.12)pqr 0.15 (0.01)kno

16x 0.84 21 22 (5) 1.58 (0.14) iq 0.1 (0.01)ln

24x 0.57 28 26 (5) 2.04 (0.40)jr 0.09 (0.02)mo

Superscripts i–r denote significant difference.

Numbers in brackets are standard errors.
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When the accuracy requirement increased, the peak-

stiffness trial occurred later relative to the trial at which

the error plateaued. Furthermore, the peak stiffness val-

ues increased as the accuracy requirement increased.

This indicates that when the task was harder to accom-

plish, phase 1 became longer and utilized more vigorous

viscoelastic forces until the task was accomplished. This

was supported by the fact that the steady-state raw error

value reached the task goal (error less than 1 mm) at the

end of phase 1 (raw error 0.81± 0.03 mm for gains 1x,

8x, and 16x combined).

However, this strategy was not as effective for

gain 24x where the task goal could not be achieved at

its steady state (raw error 1.33 ± 0.08 mm). The peak

stiffness for gain 24x was no different from the peak

stiffness for gain 16x, while the time between when

the performance error reached its steady state and the

stiffness peaked was longer than for the other gains

where the task goal was achieved. This means that if the

task goal was not reached, the viscoelastic forces kept

increasing its effort longer before moving onto phase 2.

The shift to phase 2 may be caused by fatigue or other

biomechanical factors that made it difficult to raise the

stiffness any higher for this task. It was the accuracy

requirement that made the task difficult to achieve rather

than the stiffness limit, since the error had plateaued

much earlier than the stiffness peak.

An interesting aspect of error adaptation was observed

in the transition period from phase 1 and phase 2. In

the case of gains 8x and 16x, it was noticed that error

during the transition period was significantly less than

error during subsequent trials (p < 10−3). Specifically,

after error decreased rapidly during phase 1, it was

noticed that error decreased below the steady-state value

during the transition period before rising to the steady-

state value. It appeared that after phase 1, the central

nervous system may have compromised on error in order

to reduce viscoelastic forces before settling into a steady-

state error.

So what was different with this study’s task that it

showed two different phases, an error reduction phase

and an energy reduction phase? The task here involved

small movements with a requirement to be accurate for

a brief period of time for each trial. The movement was

similar to moving a computer mouse for a small distance

and clicking a small button accurately, or moving the arm

in a sport like tennis where arm position at the time of

contact must be accurate. The small movements and brief

contact made it difficult to quickly find a low-energy

strategy that satisfied the energy requirement, given that

delayed, error-based feedback motor responses generated

by reflex circuits have been hypothesized as the template

for internal model adaptation [22, 34, 35]. For a task that

provided only a small amount of sensory feedback, it was

possible that phase 1 with its high-energy strategy was

needed to achieve this task within a reasonable time. This

was supported by the fact that the stiffness adaptation

time constant was much larger for our study than what

were previously reported for larger arm movements [13,

17, 35].

It was noticed that normalized steady-state stiffness

for gain 1x was significantly less than normalized steady-

state stiffness for gains 8x, 16x, and 24x (see Table I),

while normalized peak stiffness for gain 1x was sig-

nificantly less than normalized peak stiffness for gains

16x and 24x. This matches with previous work [31–33],

where subjects performed a positioning task with elbow

rotations and used increased stiffness as the target circle

size decreased. In general, this finding of increased stiff-

ness with greater accuracy requirement correlated with

Hogan’s theory of robotic manipulation and impedance

control [18]. According to this theory, while a robotic

controller typically uses position or force to optimize

the task execution, tasks involving accurate interaction

between physical systems, such as a hand manipulating

a rubber ball, required careful impedance modulation

in response to a motion imposed by the environment.

Furthermore, the optimal impedance is specified by

the task and the environment. The results from this

present study implied that even though the task was to

improve positional accuracy, the central nervous system

controlled performance through impedance.

There are several daily-life tasks that involve precision

positioning, and these can cause inordinate stresses on

the human body particularly when they become repet-

itive. For example, tasks such as using the computer

mouse or keyboard, precise assembly, performing mu-

sical instruments, and video games involve significant

use of the wrist and fingers. Similar to the accuracy

requirement we used in our experiment, computer users

or game players could set a “pointer speed” for the

computer mouse that controlled the proportionality be-

tween hand motion and monitor-cursor motion, and some

keyboards for handheld devices could be displayed at

different sizes. Our results suggested that the learning

period increased as accuracy requirement increased, as

in the case of computer displays with increased pointer

speed or keyboards with smaller keys. Coupled with the

high grip force required with increased gain level, both

transiently and after adaptation, this posed an increasing

risk of upper-extremity musculoskeletal disorders such as

wrist injuries and carpal tunnel syndrome [2, 26]. This

suggested that more detailed studies of hand stiffness

adaptation linked with computer and device design are

worth pursuing to minimize the risk of injury.
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