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Abstract— This paper describes the application of a partially 

observed Markov decision process (POMDP) to guide the control 
decisions made during the task of grasping objects with a simple 
compliant grasper in unstructured environments. The decision 
process relies only on the sensing of angular deflection of the 
compliant gripper joints – proprioceptive information available 
on most robot hands and grippers. This information is used to 
infer the state of contact between the gripper and the object and 
guide a set of actions to be undertaken in order to lead to a 
successful grasp. We believe that the performance of the gripper 
under a POMDP model built from this limited sensory 
information will serve as a valuable baseline for comparison with 
more complex sensing modalities, allowing for quantitative 
analysis of the tradeoffs between commonly available sensory 
suites.  
 

I. INTRODUCTION 
he uncertainty associated with interacting with an 
unstructured environment presents a number of 

challenges. For grasping, the lack of a precise model of the 
object, environment, and contact state with the grasper makes 
the task of reliably acquiring the target object difficult. 
Indeed, the fidelity of the available sensory information can 
vary widely. We are interested in the performance of a gripper 
when only proprioceptive information such as joint angles is 
available. Since the vast majority of robot hands incorporate 
this type of sensing, we would like to evaluate the 
performance of a gripper in a scenario in which only this basic 
set of information is available. This can serve as a baseline for 
future studies to address the cost-benefit tradeoffs of adding 
further sensory systems such as contact and force that can be 
used for the control of a hand during the grasping task. 

This raises the question of how to best use the very limited 
sensory information available from finger joints, especially in 
an unstructured environment where visual and a priori 
information is prone to error so there is great uncertainly 
about object properties. The framework of partially-

observable Markov decision processes (POMDPs) provides a 
formal means of dealing with the uncertainty inherent in these 
tasks and enabling robust control of the robot manipulator [1]. 
Utilizing POMDPs is a way of estimating the probabilities of 
the different states between the grasper and object and allows 
intelligent decisions to be made regarding a sequence of 
actions to be undertaken in order to converge to the target 
configuration. The POMDP framework has recently been 
applied to grasping using contact sensors on the tips and sides 
of the fingers [2]. In this paper we examine the use of the 
POMDP framework to guide manipulation by sensing joint 
deflections of a compliant gripper. 
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We begin this paper with a general description of POMDPs, 
paying particular attention to the physical interpretation of the 
various mathematical components. We then describe the 
model of the gripper that we are interested in analyzing, and 
identify a set of states and actions that we believe embody the 
most important aspects of the task we are interested in 
analyzing, which is a generalization of grasping tasks with 
frequently used robot hand architectures. Finally, we derive 
the equations governing the observation model and suggest 
practical limits on the unknown state variables which will 
enable the derivation of the probability density function. 

II. MODEL CONSTRUCTION 

A. Partially observed Markov decision processes 
A partially-observed Markov decision process (POMDP) is 

a model for formalizing the decision process under uncertainty 
in the classification of system state, in order to choose an 
appropriate action [1,2]. The POMDP model is constructed 
and used in the following manner:  

• Define a set of states S based upon the specifics of the 
task and equipment. 

• Define a set of actions A which will be undertaken 
based on the prediction of the state and which will lead 
towards some goal. 

• For every state s in S and action a in A, define a reward 
R(s,a) which will determine which action to take based 
upon the state prediction. 

• For every combination of state st and actions at, define 
a transition matrix Q(at) which represents the 
probabilities of transitioning from state st to st+1: Q(at)i,j 
= Pr(st+1=j|st=i,a=at). This matrix is called the Markov 
transition matrix. 

• Choose a set of observations O which consist of the 
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available sensory information. 
• Generate an observation model P(o|s) which will be 

used to predict the state based on the specific 
observation of sensory information: For every 
observation, define the diagonal matrix B(o) which is a 
diagonal matrix with diagonal elements (i,i) the 
probability of observing o , given the state is i: B(o)i,i 
=Pr(o|s=i). 

 
If the state probabilities pt+1(i)=Pr(st+1=i|o1…ot+1,a1,…at) 

are represented as a row vector pt+1, we can now represent the 
state-transition model as pt+1=1/N.pt.Q(at).B(ot+1) where N is 
chosen such that ∑i pt+1(i)=1. 

In this way we can now iteratively choose the appropriate 
action at+1 based on our guess of the guess of the state 
probabilities at time t+1, pt+1. The action at+1 we choose at 
time t+1 maximizes ∑i pt+1(i).R(st+1=i, at+1).  

In the context of our grasping problem, states are contact 
conditions (e.g. fingertip–to-object, finger side-to-object, etc.), 
actions are motions of the base of the hand or robot, and the 
observations are the sensed joint angles of the compliant 
gripper. 

B. Grasper Model  
Our goal in this study is to gain insight into how common 

compliant robot fingers can be used as “feelers” to determine 
contact state with little or no visual information, and use this 
information to guide the manipulator into a successful 
grasping configuration with the object. The basic approach is 
to use kinematic information provided by joint angle sensing 
and the known kinematics of the fingers to infer object 
location and geometry [3,4] and carry out a set out actions to 
lead to a target configuration in which a successful grasp can 
be achieved. The use compliant finger joints also enable the 
inference of some aspects of contact forces from this 
kinematic information.  

To reduce the parameter space of the problem, we focus on 
a simple planar gripper with two fingers, each with two 
compliant revolute joints (Fig. 1). This gripper, proposed by 
Hirose [5], is perhaps the simplest configuration that is able to 
grasp a wide range of objects. This mechanism is the same as 
that used in the 100G hand [6] and is similar to the planar, 
power-grasp configurations of a number of popular robot 
hands. 

In previous work, we examined the optimization of the 
preshape, joint stiffness, joint coupling, and actuation of this 
mechanism [7,8]. Additionally, we constructed a four-fingered 
gripper similar to this model and experimentally demonstrated 
that the compliance and adaptability designed into the 
mechanism (based upon the results of the optimization studies 
[7,8]) was able to reliably grasp a wide range of target objects 
in the presence of sensing uncertainties resulting in larger 
positioning errors [9]. Furthermore, the hardware was 
designed to be simple to use (feed-forward control, a single 
actuator for eight degrees of freedom) and robust to impacts 
and other large forces that are likely to occur in unstructured 

grasping tasks.  
For the above gripper model, we refer to the two links 

closest to the robot as ‘base links’ each having length l1. The 
other two links are referred to as ‘distal links’ and have length 
l2. The base links are connected to the robot via compliant 
revolute joints, each having rest angle ϕ1 and joint stiffness k1. 
The base and distal links are also connected by compliant 
revolute joints each having rest angle and stiffness ϕ2 and k2, 
respectively. Because of the symmetry of the setup, only the 
finger on the right is further considered in the analysis. 
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Fig. 1.  Gripper model used in this study 

C. States 
The first task in finding a representative POMDP for the 

above grasper is defining the finite set of states S. Since we 
are using this model to make decisions with regards to 
movements of the gripper, we consider as separate states a 
quasi-static representation of the relative motion within 
contact states (Table I). Thus, for example, states 3, 4, and 5 
all refer to contact between an object and the inside surface of 
the distal link, with each of these states distinguished by 
different relative motion between the link and object. 
Distinguishing these different motions is necessary as each 
produces different frictional forces and thus different 
deflections in the compliant joints. This is also the reason that 
there is only one state for contact with each surface of the 
proximal link (states 1, 2, 12, and 13); in these states any 
frictional forces would act on a line through the base joint and 
thus produce no joint torque. The use of a circular object in 
Table I is arbitrary – the states presented encompass all object 
geometries.  

Note that typical use of the finger as a “feeler” would make 
many of the states listed unlikely to occur in practice (e.g. 
states 11-13), since the robot would likely approach the target 
object in the direction of the hand opening. However, for 
completeness, we present them all in Table 1. Also note that 
state 2 can only occur for objects having a sharp protrusion or 
corner at which contact with the distal joint of the grasper 
occurs. For an object with a finite contact point radius (e.g. 
the circular object shown in the diagram), this state is 
impossible as it would require infinite contact force on link 2. 
Along these lines, we believe these states apply to all objects 
in single point contact with the finger.  



 3

On the tip of link 2, 3 different states are possible: slip out, 
slip in and stick. On both sides along link 2 the possible states 
are slip up, slip down and “roll”. This last term is a general 
term meant to encompass rolling (both up and down) and 
sticking, which can only happen for corner type contacts and 
is impossible for a circular object except for contact on the tip 
of the finger. These behaviors are lumped together as a single 
state since further sub-classification is not possible based upon 
the available information. Also, if point contact occurs on link 
1 and link 2 (which is common in the transition between those 
two individual states for a circular object), we classify the 
configuration as ‘Link 1 Inside’ (state 1) since contact on link 
1 kinematically determines the grasper state. The ‘no contact’ 
state (state 14) could also be subdivided according to where 
the center of the object is with respect to the grasper. 

TABLE I 
DISCRETE  STATES FOR THE POMDP OF A 4 LINK GRASPER. THE CIRCLE REPRESENTS A GENERIC OBJECT 

State Description 
 

State Description 
 

State Description  

1 Link1 In 
 

6 Tip 2 Slip Out 

 

11 Link 2 Out Slip 
Down 

 

2 Tip 1 In 
 

7 Tip 2 Stick 

 

12 Tip 1 Out 

 

3 Link 2 In Slip Up 

 

8 Tip 2 Slip In 

 

13 Link 1 Out 

 

4 Link 2 In Roll 

 

9 Link 2 Out Slip Up 

 

14 No Contact 

 

5 Link 2 In Slip 
Down 

 

10 Link 2 Out Roll 

 

   

 

D. Actions, Observations and Reward 
One of the key elements that determine the utility of a 

POMDP is defining an effective set of actions. Although we 
don’t go very deep into this subject here, we suggest a 
possible set of actions for this specific grasping setting:  

• ‘Move the base a fixed distance to the right’ 
• ‘Move the base a fixed distance to the left’; 
• ‘Move the base a fixed distance up’ 
• ‘Move the base a fixed distance down’ 
• ‘Move base in the direction of θ1 + θ2 down until θ2=ϕ2’ 
• ‘Move base in the direction of θ1 + θ2  up until θ2 = ϕ2 ’ 

The final two actions are chosen to allow the gripper to 
“trace” the object along the inside or outside of link 2 to 
position the hand without exerting large forces on the object.  

As mentioned in the introduction, we are interested in using 
the proprioceptive joint angle values, θ1 and θ2, as our 
observations. We believe that this case is a baseline for 
sensory information since information about the kinematic 
configuration is available on the vast majority of robot hands 
and grippers. Additional sensory information may be useful, 
but we would eventually like to perform a quantitative 

TABLE II 
NOMENCLATURE 

Parameter Definition 

ts  State at time t 

ta  Action at time t 

to  Observation at time t 

tp  State probability vector at time t 

( )tQ a  Markov transition matrix for the action  ta
( )tB o  Observation matrix for observation o  t

1 2,l l  Link lengths 

1 2,ϕ ϕ  Spring rest angles 

1 2,θ θ  Deflected angles 

1 2,k k  Joint stiffness values 

,n tF F  Normal and tangential force 

contl  Contact length 

µ  Friction coefficient 
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analysis of the tradeoffs between sensory suites, and this case 
in which we restrict sensory information to only joint angles 
will serve as a baseline for this comparison. 

A reward needs to be assigned for every state/action 
combination (for our proposed model, 14 states x 6 actions = 
84 rewards). We will not present this matrix here, but these 
rewards will be chosen based upon intuition as to whether the 
given state/action combination will lead towards the goal of 
the object being in a graspable location with respect to the 
hand. For example, when the state is ‘Link 2 Inside Roll’ 
(state 4) the reward of the action ‘Move base to the right’ 
should be more positive than ‘Move the base to the left’. 

E. The Transition Model 
The transition model represents the probability of 

transitioning from state st to st+1, given an action at. For every 
action in our action set and for every combination of (st,st+1) 
we thus must come up with a probability of transitioning from 
state st to st+1.  These probabilities can of course only be 
estimated. The most important aspect of defining these 
matrices Q(at) is to avoid eliminating possible transitions (i.e. 
by setting their probability equal to 0).  

Figure 2 provides a visualization of some possible 
transitions between different states. Note that for all states, 
one possible transition is to ‘no contact’ (state 14). As an 
example transition model for the state ‘Link 2 outside roll’ 
(state 10), if the action at is ‘move a fixed distance to the left’ 
one might assign probabilities {0.25; 0.25; 0.2; 0.1; 0.1; 0.1} 
to the states {10; 14; 9; 6; 7; 8}, respectively. 

III. THE OBSERVATION MODEL 

For the Observation Model, we need to calculate the 
probability of the observation, P(o|s), for every state s and for 
every observation. Since the observations are continuous and 
2 dimensional o=(θ1,θ2), P(o|s) is a 3 dimensional probability 
density function. Intuitively we can say that for example if the 
state s = ‘Link 2 Inside Slip Up’ (state 3), a configuration with 
θ1 > ϕ1 and θ2 > ϕ2 must have probability 0. Also, we can see 

that for this state a configuration with θ2 = 0 yields an infinite 
force component in the direction of the distal link, which is 
impossible.  

To systematically approach this problem we first derive the 
equations that give the relationship between the force acting 
on the distal link and the measured observation (θ1,θ2). These 
equations will give us insights in what we can infer from 
knowledge of the joint angles θ1 and θ2. Finally a method is 
described for how to calculate P(o|s) for every state s. 

Link 1 In

Tip 1 In

Slip Down

Link 2 In

Slip Up

Slip Up

Slip Down

Stick

Tip 1 Out

Link 1Out

Slip In

Stick

Slip Out

No Contact

Link 2 Out

Roll

Tip

Fig. 2.  Representation of possible transitions in the transition model. 

lcont

Ft
Fn

 
Fig. 3.  Force and length convention 

A. Governing Equations 
To derive the relationship between the joint angles, joint 

stiffnesses, and the contact forces on the finger, the following 
convention is used (Fig. 3): The tangential force Ft is taken 
positive in the direction of link 2, out. The normal force Fn is 
taken positive to the inside. The length where the object 
makes contact is lcont. If contact is on the tip of the outer link, 
lcont = a2. A simple force-torque balance gives us the 
relationship between the angular deflections, the contact 
length and the force components (forward and inverse): 

1 1 1 2
1 2

2 1 2
2 2

2 2
2

1 ( sin( )

               cos( ))

n cont
t

n cont n cont
n

n cont

F lF l
k k

F l F lk F l
k k

F l
k

θ ϕ ϕ

ϕ

θ ϕ

⎧
= + +⎪

⎪
⎪

+ + +⎨
⎪
⎪

= +⎪
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2 2 2

1 1 1 2 2 2 1 2

1 2
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( ) ( ) cos(
sin( )

n
cont

N
t

kF
l

k k F lF
l

θ ϕ

)θ ϕ θ ϕ θ
θ

−⎧ =⎪⎪
⎨ − − − −⎪ =
⎪⎩

 

 
Note that the nomenclature used in this paper is 

summarized in Table II. Additionally, note that these 
equations are valid only for contact on link 2, as tangential 
force on link 1 cannot be known based on the available 
information.  

Each of these two equations are in terms of three unknowns 
Fn , Ft and lcont. Therefore, after measuring θ1 and θ2, some 
further information relating to the state must be assumed in 
order to solve for the three remaining state variables Fn , Ft 
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and lcont. For example, if we know there is contact on the tip of 
link 2 (lcont = a2), we can infer both components of the force 
from measuring the angular deflections. Also, if we know for 
example that the system is in state 11, ‘Link 2 Outside Slip 
Down’, then we know the relation between the force 
components Ft=µFn and can make inferences about the three 
state variables by assuming some bounds on the coefficient of 
friction, µ, based upon knowledge of our finger coverings, for 
instance.  

B. Derivation of the Observation model 
To generate the observation model, we must find the 

probability of observing o=(θ1,θ2) for each of the fourteen 
states at some predetermined sampling density and range of 
the observations θ1,and θ2. For example, suppose we are 
analyzing state 11, ‘Link 2 Outside Slip Down’. What can we 
then infer for the probability of o=(θ1,θ2)? To make judgments 
regarding this probability, we can assume some reasonable 
bounds on our unknowns. For example:  

• min max
t

n

F
F

µ µ≤ ≤   

•  (for most objects and finger coverings) 0nF ≥

• F
ur

<  maxF

•  20 contl a≤ ≤
 
These limits can be set based on some a priori knowledge of 
the specific task. For instance, if you know you are attempting 
to grasp an empty glass, one might put Fmax=10N, above 
which the glass will almost certainly be pushed away and will 
no longer be in contact with the gripper. Additionally, a 
reasonable limit on the coefficient of friction could be 
assumed (e.g. 0 ≤ µ ≤ 3).  

With these constraints specified, one can now construct the  
probability density function P(o|s), for s = ‘Link 2 Outside 
Slip Down’ as follows: For every combination of θ1 and θ2, 
calculate the contact lengths, lcont , that satisfy all the above 
constraints by using the formulae that relate the angular 
deflections to the forces. For example, one might find that for 
l1<lcont<l2 all the above constraints are satisfied for that 
specific combination of θ1 and θ2. The probability at (θ1 , θ2) 
might then be chosen to be proportional to the ratio of the 
possible link locations to the total link length, or (l2-l1)/l2. The 
proportionality constant is determined such that it normalizes 
the 3D probability distribution. 

For the case of state 9, ‘Link 2 Outside Slip Up’, we can 
use the previous derivation after changing the bound for the 
friction factor to -µmax ≤ Ft/Fn ≤ -µmin and the bound for the 
normal force Fn ≤ 0. When the state is state 10, ‘Link 2 
Outside Roll’, the friction factor bound becomes -µmax ≤ Ft/Fn 
≤ µmax. 

The derivation of the probability functions for the states on 
the inside of link 2 are similar, with the only difference that 
here we can improve our estimation of the probability 

function if we would know something about the local object 
geometry (e.g. a circle with r >0 cannot touch link 2 with lcont 
= 0 without touching link 1). In these instances, we can 
change 0 ≤ lcont ≤ l2 to llow ≤ lcont ≤ l2, with llow determined by 
the lower bound of the local geometry. 

If the given state is contact on the tip of link 2, we cannot 
‘scan’ the contact length anymore because this is now given 
(lcont=l2). Since θ1, θ2 and lcont are known, the two components 
of the force at the tip are known. However, the direction of the 
normal force relative to the object is now unknown (the 
normal of the local object geometry at the contact point is 
unknown). Instead of ‘scanning’ the contact length we can 
now do the same thing, but with the direction of the normal 
force with respect to the object For the given states on link 1, 
similar principles can be used to derive P(o|s). 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper we formalized the problem of determining the 

contact state of a simple compliant gripper with an unknown 
target object in the framework of a partially-observable 
Markov decision process (POMDP) utilizing only information 
about the kinematics of the gripper (i.e. joint angles). 
Specifically, we proposed a set of states, a set of actions and 
an observation model that can be used in setting up this 
POMDP.  

A methodology was developed to construct the probability 
distribution functions that belong to the different states. These 
probability distribution functions reflect the probability of 
observing a certain pair of angles, without assuming anything 
about the environment. This observation model has the 
property that it gets more accurate if more about the 
environment is known (e.g. bounds on the friction coefficient 
or maximal force). 

An immediate way of improving the performance of this 
POMDP is to divide the links in sub-regions and increase the 
set of states accordingly. In this way, the observation model 
can ‘eliminate’ some states more effectively (e.g. by giving 
the regions at the end of the distal link higher probabilities 
than the regions closer to tip 1). In combination with a 
respective change in the reward function this can substantially 
improve the performance. For example, one might want to 
perform a different set of actions when there is contact at the 
end of the distal link than when contact is closer to the joint. 

Subsequent future work includes the implementation of the 
suggested POMDP. Doing this will require specifying a 
Markov transition matrix for every action as well as a reward 
for every combination of action and state.  Additionally, we 
will need to construct a simulation to model the physical 
interaction between the grasper and object, including the 
grasping process. 

Ultimately we would like to use the POMDP framework to 
evaluate the tradeoffs between different sensory suites 
available to the grasper. For instance, how much better would 
performance be if contact sensor information was available in 
addition to joint angle information? Does the inclusion of 



 6

fragile sensors such as force transducers warrant the added 
expense and unreliability? Furthermore, the POMDP 
framework could be extended to grasp stability analysis. How 
reliably can “stability state” be determined under various 
observation sets (i.e. sensory information)? These types of 
questions might be rigorously undressed under the POMDP 
framework to provide valuable information to both designers 
and end-users of robot hands. 
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