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Abstract. We are working to develop beating-heart atrial septal defect (ASD) 
closure techniques using real-time 3-D ultrasound guidance. The major image 
processing challenges are the low image quality and the high frame rate. This 
paper presents comparative results for ASD tracking in sequences of 3D cardiac 
ultrasound. We introduce a block flow technique, which combines the velocity 
computation from optical flow for an entire block with template matching. 
Enforcing similarity constraints to both the previous and first frames ensures 
optimal and unique solutions. We compare the performance of the proposed 
algorithm with that of block matching and optical flow on six in-vivo 4D 
datasets acquired from porcine beating-heart procedures. Results show that our 
technique is more stable and has higher sensitivity than both optical flow and 
block matching in tracking ASDs. Computing velocity at the block level, our 
technique is much faster than optical flow and comparable in computation cost 
to block matching. 

1   Introduction 

Atrial septal defects (ASD) are congenital heart malformations consisting of openings 
in the septum between the atria. This allows blood to shunt from the left atrium into 
the right atrium, which decreases the efficiency of heart pumping. Although the 
surgical intervention for ASD closure is well established and has excellent prognosis, 
it is performed under cardiopulmonary bypass (CPB), which has widely 
acknowledged harmful effects. Minimally invasive beating-heart ASD closure will 
avoid using CPB and improve the patient rehabilitation. Reliable visualization of 
structures within the heart has been one of the major challenges to successful beating-
heart surgical interventions [12]. 

3D Ultrasound (US) is simple, cheap and fast, and allows the surgeon to visualize 
cardiac structures and instruments through the blood pool. US also has some major 
disadvantages, being extremely noisy with poor shape definition, which makes it 
confusing and hard to interpret in the operation room. Tracking tissue in 3D US 
volumes is particularly difficult due to the low spatial resolution. Therefore, the 
development of tracking methods for volumetric data in 4D applications is necessary 
to assist clinical procedures.  

An optical flow approach was proposed in [5] to track endocardial surfaces. The 
data points are initialized manually and a finite element surface is fitted to the points. 
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The method extends to 3D the region-based optical flow from [11] using a simple 
correlation and takes approximately 2 min/frame after initialization. Boukerroui et al. 
[2] use a better-adapted similarity measure introduced in [4] to compute region-based 
optical flow in US image sequences. Their results, although faster, are 2D. The 
initialization is left out as a separate subject and the authors propose a parameter 
optimization scheme [2]. A knowledge-based approach using level sets is proposed in 
[9]. Segmentation and tracking are alternated using shape knowledge, visual 
information and internal smoothness constraints. The method is parametric and 2D. 
An interesting 3D cross-correlation-based approach for speckle tracking on simulated 
data is proposed in [3]. However, 3D speckle tracking poses a serious of difficulties, 
from optimization and computational costs, to speckle decorrelation in time and 
space. 

A number of approaches have been tried. Block matching is fast and simple, but 
estimates velocities at low level and lacks robustness. Optical flow has higher 
sensitivity and specificity, but is very slow and must find a good compromise between 
local and global displacements. 

In this paper, we present an approach adapted to ASD tracking that estimates 
velocities for an entire block using the concept of voxel-based optical flow. The 
method is fast and avoids the problems of the traditional block matching, while using 
the sensitivity of optical flow. The computation is done volumetrically and the 
displacement optimizes a similarity measure relative to both the previous and original 
frames. We compare the new results to those obtained by classical implementations of 
block matching and optical flow. 

Section 2 of the paper presents the methodology of the tracking algorithms. We 
mention block matching, optical flow and similarity measures, and introduce the 
block flow technique. Comparative results on 3D cardiac US images are shown in 
Section 3. 

2   Method 

At this stage, the initialization of the process is done manually by allowing the user to 
select a block in the first frame that is centered on the ASD. This gives a first estimate 
of the ASD location and a template for the computation of similarity scores, as seen 
later in the paper. 

2.1   Block Matching 

The first approach we considered was that of single block matching [8].  This multi-
scale intensity-based method assumes that there is a global intensity relationship 
between two images. We are simply interested in matching two blocks, which 
simplifies the algorithm. We investigated three types of similarity measure suitable 
for images of the same modality. First, an identity measure, the sum of squared 
differences (SSD) of normalized intensities, as seen in Equation (1); a linear measure, 
the inverse Pearson correlation coefficient (PCC), as in Equation (2); and a statistical  
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measure, the maximum likelihood (MLE) introduced in [4] and refined in [2], as seen 
in Equation (3). ref is the reference block, tar the target and n represents the number 
of voxels in a block. An overview of intensity similarity measures can be found in 
[10]. While SSD does not cope with relative intensity, PCC minimizes the least square 
fitting to the original data. The MLE measure [2] assumes that US images are log 
compressed with Rayleigh noise, but no change of noise between frames. Minimizing 
the square error between blocks becomes a matter of minimizing the probability 
distribution function of the additive noise between frames. 
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Our implementation uses two steps, from coarse to fine, and finds the block in the 
target image that is most similar to the given block in the reference image. To avoid 
padding at margins, we reduce the size of the reference block to account for clipping 
at the edge of the target. The best-matched target block is then grown to the original 
size of the reference. 

2.2   Optical Flow 

As a second approach, we tested the efficiency of region-based optical flow. This is a 
3D extension of the 2D method presented in [2] and based on [11]. There are other 
techniques to compute optical flow, such as the first-order differential method in [7]. 
Such methods are very sensitive to noise, which is high in US, and require spatial and 
temporal smoothing. Our real-time tracking application cannot smooth temporally, as 
we do not know the data in the next frames. Phase-based techniques [6] require an 
optimal search space, which is difficult to predict in cardiac images. A review of 
optical flow techniques can be found in [1]. 

The major disadvantage of optical flow techniques is the computational load. We 
propose a two-step multi-scale approach, which uses both block matching and optical 
flow. Block matching gives the coarse velocity, which is subsequently refined by 
optical flow. At both levels, we employed MLE as similarity measure. First, the 
contour of the ASD is extracted in the first frame and then the velocity of the entire 
block is estimated. At the finer level, the optical flow is estimated only for the contour 
voxels, which are then wrapped by the resulting block. This approach is considerably 
faster than multi-scale optical flow. 
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2.3   Block Flow 

Finally, we introduce the notion of “block flow”, which uses the velocity estimation 
of optical flow [11], but for the entire block, instead of every voxel. For a given 
reference block ref, we define empirically a maximum displacement md in the new 
image frame. Within the search space, we compute the estimation error as in Equation 
(4). Minimizing the energy E is equivalent to minimizing the maximum error in 
similarity between the target block tar and ref, and between tar and absref, where 
absref is the user-defined block in the first frame of the 4D sequence. E becomes a 
value of worst match and reduces velocities u, v and w in directions of blocks that are 
not similar to both the previous frame and the absolute reference. absref acts as a 
template ensuring that the solution does not become too different than the initial 
estimate. 

Extending to 3D the principles presented in [2, 11], we obtain the probability 
distribution R, as in Equation (5), where τ normalizes the probabilities to sum to 1. 
The estimate of the three-directional block velocity Vb is presented in Equation (6). 
Singh [11] minimizes its error through a Gauss-Siedel relaxation algorithm. Unlike 
[11], we do not use neighborhood information, since the displacement is unique for 
the entire block. As this enforcement is valid for tracking an object like ASD, this is 
not applicable to any tracking problem. 
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Once the velocity is calculated, we verify if the new match is on the image 
margins. If that is the case, we grow the block to ensure that it will propagate with the 
same size as absref. 

3   Results 

To test the tracking algorithms, we used a database of six 4D time sequences of 
porcine beating hearts with artificially created ASD. All the US data were acquires in-
vivo with a Sonos 7500 Live 3D Echo scanner (Philips Medical Systems, Andover, 
MA, USA). The time of acquisition was of 2s/case at a frame rate of 25 volumes/s. At 
this stage, the implementation of the three tracking algorithms was done in Matlab 
version 7 (MathWorks, Inc.) on a Pentium IV machine with 1GB RAM and 2.40 GHz 
processor. The image size is 80x80x176x50. 

The performance of the block matching algorithm using two levels (coarse to fine) 
of combined translation-rotation and MLE is shown on the top row of Figure 1. Each 
block shown in Figure 1 is a 3D entity visualized from the right atrium looking into 
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the left atrium. The rows present the absolute reference in frame 1 and tracking results 
after 20, 40 and 50 frames. Judging by the small rotations and the rounder shape of 
ASD, we also tested block matching using only multi-scale translation. The results are 
almost identical (with an error of maximum 2 voxels) and the speed is increased to 2 
frames/s with SDD and PCC similarity criteria. Using MLE as similarity measure 
gives more sensitivity to the algorithm, but it is more computationally expensive (0.5 
frame/s). 

The performance of the two level optical flow algorithm (block matching at the 
coarse level and optical flow at the fine level) was visually more robust than that of 
simple block matching. Using MLE as similarity criterion, the computational speed 
was of 1 min/frame. The middle row in Figure 1 shows tracking results using optical 
flow. 

 

 

Fig. 1. The comparative performance of the three tracking algorithms. The top row shows 
results by block matching; the middle row by optical flow; the bottom row by block flow. All 
three examples used MLE as similarity criterion. From left to right, the columns show 3D 
blocks visualized from right atrium to left atrium at frames 1, 20, 40 and 50. In the middle row 
we also show the migration of ASD contour voxels (bright spots), as their velocities are 
computed by optical flow. While we used smoothing between neighboring points, no 
connectivity was enforced. 

Finally, the bottom row in Figure 1 presents tracking results using our block flow 
algorithm. Using energy estimation at block level instead of voxel level, the block 
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flow method is much faster than optical flow. Its computation speed is 0.3 frame/s, 
comparable to that of simple block matching, but with much more robust results. 

In Figure 2, we present larger 3D volumes (the entire frame) of the results shown 
in Figure 1. Note that the migration of contour voxels in the optical flow algorithm 
enlarges the ASD block. Although in Figure 1 the performance of optical flow and 
block flow look similar and better than that of block matching, Figure 2 shows 
superior results of our block flow technique. 

 

Fig. 2. Comparative tracking results in the full 3D frame. The left column presents the first 
frame and the absolute reference marked as a block; the middle column shows tracking results 
after 25 frames; the right column after 50 frames. The top row shows results by block flow and 
the bottom row by optical flow. Please note the enlarged blocks on the bottom row. 

Table 1 shows tracking quantitative results. Mean MLE scores are computed for 
the six 4D images using the three tracking algorithms. The minimum score represents 
the best match. The block flow algorithm performed better than the other two, with 
the exception of one case, where the optical flow technique had lower scores. Block 
matching performs better than optical flow over the first 25 frames, due to the error 
induced by the block growth, but is less stable in time. 
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Table 1. The mean MLE scores for the six ASD 4D images using the three tracking techniques. 
Scores were calculated after 25 and 50 frames as similarities with the absolute reference. MLE 
scores are normalized and vary from 0 for the perfect match to 100 for the worst. The block 
flow algorithm performs better in all but one case, where tracking with optical flow has a lower 
score.  

 Frame 25 Frame 50 
Block Matching 6.82 9.29 
Optical Flow 7.46 7.17 
Block Flow 4.14 5.99 

4   Discussion 

We presented comparative results for the tracking of ASD in sequences of 3D cardiac 
ultrasound. We introduced a block flow technique, which combined the velocity 
computation from optical flow with template matching. Enforcing similarity 
constraints to both the previous and first frames, we ensure optimal and unique 
solutions. Computing velocity at the block level, our technique is much faster than 
optical flow and comparable in computation to block matching. Results on in-vivo 4D 
datasets show that our technique is more stable and has higher sensitivity than both 
optical flow and block matching in tracking ASD. 

The block flow tracking algorithm finds the three-dimensional velocity of an entire 
block that contains the object of interest. In this application, the object is an ASD with 
an approximate cylindrical shape. The ASD can be extracted from every new block 
by simple and fast thresholding.  

Compared to the basic block matching algorithm, out method has higher 
sensitivity in computing displacements, which gives it more robustness in time. 
Optical flow is sensitive to very localized changes, which makes the method also 
prone to errors. Interpolation, smoothing and connectivity constraints improve the 
functioning of optical flow, but also approximate the results. Moreover, the block 
flow method is much faster than optical flow. For an application such as ASD 
tracking, the block displacement is sufficient, but this will be too coarse for tracking 
finer details.  

We first normalized the intensities to reduce the effect of noise change and angular 
reflections from frame to frame. Then we compared the performance of several 
similarity measures and found that statistical measures, such as maximum likelihood, 
are better for our application. A coarse to fine approach is desirable for effectiveness 
and speed. 

We used a Rayleigh noise model in the similarity measure. Although we did not 
smooth the data, the pre-processing of the commercial ultrasound machines may alter 
the noise distribution. Our assumption led to robust results, but other noise models 
may be studied.  

For future work, we will optimize the algorithm implementation to make it run in 
real time. The automatic detection of the ASD absolute reference will be investigated 
along with the use of the cardiac cycle for predictive estimation. 
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