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Abstract 
 

Relaying spatially distributed forces promises to 
enhance the performance of telemanipulation systems.  
However, the proper way to render tactile information 
from the sensor to the display is not clear for current 
displays, where the user applies a constant contact force.  
We present a simple approach to rendering tactile 
information to improve performance in a lump 
localization task in a compliant environment.  The 
algorithms presented subtract uninformative background 
information from the tactile signal.  We observed that 
subtracting a fixed background pressure frame reduced 
lump localization error by up to 20% while decreasing 
the time required to find the lump by up to 44%.  
Subtracting a background frame that depends on applied 
force further reduced lump localization error by another 
17%.  
 
1. Introduction 
 

Through haptic feedback, telemanipulation systems 
attempt to simulate the sensation of direct contact with a 
remote environment.  Most current systems, however, 
only transmit force information based on a single point of 
contact.  These telemanipulators can be enhanced with the 
transmission of spatially distributed force information, 
sometimes denoted “teletaction” [1]. Spatial pressure or 
shape profiles at a remote location are sensed, and then a 
corresponding pressure or shape distribution is recreated 
against the operator’s fingerpad.  The presence of spatially 
distributed forces has been shown to significantly enhance 
spatial acuity, orientation detection, and performance on 
lump detection tasks using palpation [2].  These tasks are 
important in remote medicine and minimally invasive 
surgery where the addition of tactile feedback can 
improve manipulation as well as diagnosis [3, 4]. 

While much work has investigated rendering [5] and 
transmission [6] techniques for point based forces, little 
work has examined the proper way to render spatially 
distributed forces.   This applies to both virtual tactile 
environments as well as teletaction systems.   This 
observation is somewhat surprising given the number of 
tactile displays and tactile sensor devices that have been 
developed [7-12]. Fundamental work has been presented 
by Moy et al., who developed techniques for the optimal 

transmission of tactile information based upon linear 
mechanical models of the tactile sensor and the fingerpad 
[13].  However, this work targets a tactile display that is 
attached to the finger and can apply stimulus that varies 
continuously from zero. This does not represent current 
tactile display technology, which is typically fixed in 
position and requires a significant user-applied force to 
maintain contact between the finger and display, across all 
levels of tactile stimulus presented by the display. 

In this paper, we investigate algorithms for use with 
teletaction systems for finding stiff features within 
compliant environments. These algorithms are applicable 
to medical and surgical tasks such as breast tumor 
localization [14] and liver palpation [15]. Direct 
transmission of information from a tactile sensor to a 
tactile display can be problematic in compliant 
environments because the tactile information due to the 
contact with the enveloping medium can obscure the 
relevant tactile information of an embedded feature.  Our 
hypothesis was that if this constant background stiffness 
were subtracted from the tactile signal, the signal-to-noise 
ratio would improve, and performance would be enhanced 
in a lump finding task.  However, background pressure 
amplitude and distribution varies with applied pressure on 
the tactile sensor, so we investigated both the case where a 
fixed pressure frame was subtracted and where a pressure 
frame that varied linearly with applied pressure was 
subtracted.  These algorithms, along with the direct 
transmission case, were evaluated in a lump finding task 
across a range of compliant environment thicknesses.    
The goal was to find salient features of touch information 
used in teletaction so that these features could be the focus 
of future algorithm and teletaction system development. 

   
2. Methods and Materials 
 
2.1. Teletaction system 

 
The teletaction system used for the experiment consists 

of a tactile sensor that measures a two dimensional 
pressure profile, a tactile display that recreates small scale 
shape profiles on the fingerpad, and the necessary signal 
processing algorithms that process the information from 
the sensor to the display (Figure 1).  The tactile sensor 
(Pressure Profile Systems, Inc., Los Angeles, CA) 
measures pressure across a 16 x 16 square array of 
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pressure sensels (sensor elements) spaced 2 mm apart with 
a resolution of about 0.4 kPa (Figure 2a).  We minimize 
the effect of the curvature and achieve a one to one 
mapping with the tactile display by only using the center 6 
x 6 sensels. When in contact with an object, the sensor can 
obtain a pressure profile reflective of the object’s tactile 
qualities such as shape or stiffness at a bandwidth of up to 
10 Hz.   

The tactile display is an array of mechanical pins 
actuated by RC servomotors [11] (Figure 3).  The pins 
have diameters of 1 mm and an interpin spacing of 2 mm.  
They have a maximum displacement of 2 mm and a 
resolution of 0.1 mm.  A 2 mm thick piece of silicone 
rubber (HSII RTV Base and Colored Catalyst, Dow 
Corning) was placed on the pins of the tactile display as a 
spatial low-pass filter [16].  Although the tactile display 
can run up to 25 Hz for small pin movements, the tactile 
sensor limited the bandwidth of the teletaction system to 
10 Hz.  
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Figure 1.  Comparison between the flow of tactile 
information in direct contact and in the 
teletaction system (a) (b)

  Figure 3.  (a) Tactile display with rubber low-pass 
filter  (b) Close-up of tactile display pins The tactile sensor is mounted in series with a force 

sensor (Nano43; force resolution: 0.031 N; ATI Industrial 
Automation, Inc; Apex, NC) to acquire the overall 
exploration force applied to the sensor through a handle 
(Figure 2b).  In addition, a magnetic position tracker with 
a positional resolution of 0.51 mm  (MiniBird, Ascension 
Technology Corporation; Milton, VT) is used to 
determine the position of the tactile sensor using position 
and orientation information.  The magnetic tracker is 
mounted to the opposite end of the handle to minimize the 
interference of the sensor’s steel base. 

 
2.2. Algorithms and signal processing 

 
There are two filters applied to the tactile sensor data 

before the pressure profile is recreated on the tactile 
display.  The first filter is one of three rendering 
algorithms that attempt to correct for a constant 
background stiffness.  The second filter is a weighted 
average that reduces high spatial frequency noise in the 
sensor data. For a given sensel position, the corresponding 
sensel was weighted at 50%, while the eight surrounding 
sensels together were weighted at 50%. 

(iv) 

(iii) (ii) 
(i) 

4.5 cm 

3.8 cm radius 

16 x 16 sensels  
(2 mm x 2 mm each) 

6 x 6 active 
sensels 

5.0 cm Three rendering algorithms were used in the 
experiment.  The first algorithm set the tactile display pin 
heights proportional to the pressure data from the tactile 
sensor.  For the second algorithm, a fixed pressure frame 
is subtracted from each pressure frame received from the 
tactile sensor. Similar to the second algorithm, the third 
also subtracts a pressure frame from each frame collected, 
but the frame that is subtracted depends linearly on the 
current pressure the user applies.  Typical pressure frames 
along the centerline for a range of applied pressures are 
shown in Figure 4. The full signal processing (algorithms 
and averaging) is expressed in Table 1, where D is the 6 x 
6 array of tactile display pin heights, P is the 6 x 6 array 
of pressure data from the tactile sensor, 2

~
�  is a fixed 6 x 6 

array of background pressures, 
3

~
�  is a 6 x 6 array of 

background pressures that varies with f, the exploration 

(a) (b)

Figure 2.  (a) Schematic of tactile sensor array (b) 
Tactile sensor (i), force sensor (ii), handle (iii), 
and position sensor (iv) 
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force in the dimension normal to the plane, k = 1.4 is a 
constant that scales sensor data to display pin height, * 
denotes convolution of the pressure with A, a noise 
filtering averaging kernel 
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Each element is then limited to values between 0 and 
2 mm to reflect the capability of the tactile display. 
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Figure 4.  Background pressures for different 
applied forces 
 

 
2.3. Embedded lump models 

 
The three algorithms were compared by having 

subjects locate rigid lumps embedded in constant stiffness 
elastic models.  We constructed twelve models with a 1.90 
cm rigid acrylic ball on the bottom of a 30.5 x 7.8 cm x 
5.1 cm container filled with silicone rubber (GE Silicones 
RTV6166) with a Young’s modulus of approximately 
15 kPa (Figure 5).  The silicone thicknesses were chosen 
to be 1.50, 1.75, and 2.00 times the diameter of the ball, 
or 2.86 cm, 3.33 cm, and 3.81 cm.  The thinnest model 

allowed users, through the teletaction system, to readily 
detect a lump with a reasonable exploration force (~20 N) 
while the thickest model required users to exert a 
substantially higher force to find the lump (~30 N).  For 
each thickness of silicone, the ball was glued to the 
bottom of the container in one of four locations, spaced 
approximately five centimeters apart to minimize 
memorization of the location of the lump.  The width of 
the container was chosen so that the tactile sensor would 
fit well with less than a centimeter on either side.  In this 
way, subjects would only need to search in one dimension.  
A thin layer of latex was laid across the top of each model 
in order to protect the silicone from damage, and hand 
lotion was used to lubricate the surface so that the sensor 
could slide across the model with low friction. 

 
  

 
 
 
 

 

3.81 cm 
3.33 cm 

2.86 cm 

d =1.90 cm 

Figure 5.  Cross-section of silicone models 
 

2.4. Experimental design 
 
This experiment used a two-factor, within-subject 

repeated measures design with algorithms (three levels) 
and model thickness (three levels).  Each combination of 
algorithm and model thickness was presented ten times in 
random order to each subject, for a total of 90 trials per 
subject.  The order in which the various combinations of 
algorithm and model thickness were presented was 
counterbalanced across trials and across subjects.  Fifteen 
subjects, ranging from ages 20 to 33, volunteered for the 
experiment for monetary compensation.  All subjects 
described themselves as right-handed and reported no 
hand injury to either hand.   

Table 1.  Rendering algorithms 
 

Alg. Description Full Expression 

1 

Pressure 
information 
directly 
transmitted 

� � 6...,,1,;,, ��� jiAPkD jiji  

2 
Fixed frame 
subtracted � � 6...,,1,;)~( ,2, ����� jiAPkD jiji  

3 

A frame 
subtracted 
dependent 
on force 

� � 6...,,1,;f)~( ,3, ����� jiAPkD jiji  
 
2.5. Procedure 
 

Subjects were told to locate hard lumps in soft tissue 
models by exploring the models using the tactile sensor 
with their right hand and feeling the tactile display with 
their index finger of their left hand (Figure 6).  For each 
trial, the subject began with the sensor touching the left 
side of the model and then scanned the sensor back and 
forth across the one-dimensional model.  The subjects’ 
primary goal was to accurately center the tactile sensor 
directly above the hard lump.  Given that they could 
achieve the primary goal, the secondary goal was to 
complete this task as fast as possible.  The trial was 
stopped when the subject verbally announced that he or 
she had found the lump. 
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3. Results 
 

Increasing algorithm index (1: no subtraction, 2: fixed 
pressure frame subtraction, 3: force-dependent pressure 
frame subtraction) resulted in a decrease in lateral 
position. Within each algorithm, increased model 
thickness increased lateral error. A two-factor, within-
subject ANOVA was performed on the lateral position 
errors. The two factors were algorithm (three levels) and 
model thickness (three levels).  Both algorithm and 
thickness were found to be significant with respect to the 
primary performance metric of lateral error;  (F(2,248) = 
27.0, p < 0.001 and F(2,248) = 17.7, p < 0.001, 
respectively) (Figure 7a). Pairwise comparisons show that 
all three algorithms are significantly distinct from one 
another with respect to lateral error.  However, the thinner 
models (2.86 and 3.33 cm) are not significantly distinct (p 
> 0.10).  

Figure 6.  Experimental setup for teletaction 
system 

 
Although subjects had no time restraints, they were 

informed that each trial could take up to a minute, 
although the average trial length would be less than thirty 
seconds.  They were given a short break every nine trials, 
and total experiment length was about an hour.  Subjects 
were blindfolded so they were unable to see the ball in the 
model, and their exploration technique would not be 
affected by observing the thickness of the silicone model.  
To mask audio cues, the subjects wore earplugs and 
headphones that played noise in the frequency range of 
sounds made by the tactile display.   
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Before the experiment, subjects were given a training 
session in which they were taught how to use both devices 
and in which they could gain experience in practice trials.  
Subjects were always trained with a model of medium 
thickness, but the algorithm on which they were trained 
was chosen randomly.  We also trained the subjects to 
recognize the largest force needed in order to avoid 
potentially damaging higher forces to the force sensor. 

 
2.6. Analysis 

(a)  Thickness 
We defined outlier trials to be those in which the final 

lateral position error was greater than 2.5 cm, 
approximately half the distance between the placement of 
the balls.  These trials were discarded from further 
analysis and noted as trials where the subject did not find 
the lump. 
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(b) 

The static background pressure frame P used for 
Algorithm 2 was determined specific to each model 
thickness prior to the experiment.   Pilot studies showed 
that acquiring this typical pressure frame using a force of 
20 N allows subjects to gain useful tactile information at 
typical forces of about 25-30 N.  The background frame 
used for Algorithm 3 was determined by taking five 
sample frames at various forces up to 40 N.  Previous tests 
showed us that each sensel’s signal is approximately a 
linear function of the applied force.  Using five data points 
of force applied and corresponding background frames, 
we calculated a linear fit using the method of least squares 
for each sensel.   

 
Figure 7.  (a) Average lateral error and (b) 
exploration time across all subjects’ trials.  Error 
bars show standard error. 
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Increasing algorithm number and decreasing model 
thickness each served to significantly decrease the time 
required to find the lump (F(2,248) = 31.6, p < 0.001 and 
F(2,248) = 50.6, p < 0.001, respectively) (Figure 7b).  
Pairwise comparisons show that Algorithm 2 and 3 are not 
significantly distinct with respect to time per trial (p > 
0.9).  However, all levels of thickness are distinct with 
respect to time per trial.  The interaction effect between 
algorithm and thickness did not reach significance for 
either the lateral position error nor the time per trial 
(F(4,496) = 1.43, p > 0.2 and F(4,496) = 0.738, p > 0.50). 
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Subjects were unable to find the lump in
trials, where increasing algorithm index 
significant decrease in the number of time
missed the lump (F(2,28)=5.84, p < 0.01
shows the distribution of outliers for 
categorized by algorithm and model thickne
the thickness had no significant effect (F(2,
0.10). 

Average forces were calculated for e
averaged across subjects (Figure 9a). Su
using Algorithm 3, applied significantly mo
when using Algorithms 1 or 2 and sub
significantly less force when using the th
(F(2,266) = 17.5, p < 0.001 and F(2,266)
0.001).   We also examined forces one seco
subject found the lump.  Again, subjects
Algorithm 3, applied significantly more for
using Algorithms 1 or 2 and increased mo
results in increased applied force (F(2,266
0.001 and F(2,266) = 37.1, p < 0.001) (Figur

For each combination of algorithm and 
average absolute exploration speed was d
dividing the distance moved between con
points by the time elapsed and averaging ac
(Figure 10).  While a two-factor ANOVA sh
algorithm and model thickness are statistica

(F(2,266) = 5.66, p < 0.005 and F(2,266) = 3.72, p < 
0.05), pairwise comparisons show that Algorithm 1 and 2 
are the only significantly distinct groups with respect to 
exploration speed (p < 0.01), and that none of the 
thickness levels are statistically distinct. 
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Figure 9.  (a) Average exploration force in a trial.  
(b) Average force applied one second before the 
end of the trial. Error bars show standard error. 
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Figure 10.  Average absolute speed across all 
trials.  Error bars show standard error. 
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4. Discussion 
 

Our goal was to examine the performance benefits of 
using simple rendering algorithms when using a tactile 
system to locate rigid features embedded in compliant 
environments.  We found that the subtraction of a fixed 
background frame (Algorithm 2) significantly improves 
the ability to localize the lump and reduces the time 
needed to find the lump across all levels of thickness.  
Average lateral error decreased from 0.61 cm to 0.49 cm 
for the thinnest model (20% error reduction) and from 
0.81 to 0.68 cm for the thickest (16% error reduction).  
Average time required to find the lump decreased from 
10.0 s to 5.6 s for the thinnest model (44% reduction in 
time) and from 16.0 s to 10.4 s (35% reduction in time). 
The subtraction of a fixed background frame also 
significantly reduces the chance that a user will miss a 
lump entirely, reducing the average number of outliers per 
10 trials from 0.6 to 0.2 for the thinnest model (67% 
reduction in misses) and from 1.1 to 0.5 for the thinnest 
model (55% reduction in misses).   

Using a force dependent background subtraction 
algorithm (Algorithm 3) further improves lump 
localization accuracy while not significantly changing the 
time needed to find the lump.  Average lateral error 
decreased another 0.1 cm for the thinnest model (a 36% 
total decrease in lateral error) and an additional 0.18 cm 
for the thickest model (a 37% total decrease in lateral 
error).  The chance that a user will miss the lump entirely 
is similarly reduced, with the average number of outliers 
per ten trials at 0.0 for the thinnest model (a 100% total 
reduction in misses) and 0.1 for the thickest (an 80% total 
reduction in misses).  

These results are interesting due to the simple nature of 
the algorithms.  Even though background tactile 
information varies with applied pressure on the sensor, a 
significant performance benefit is still observed when 
subtracting off a fixed background frame.  The benefit is 
also observed across all levels of thickness, showing that 
the performance increase is robust across environments.  
This benefit can be derived without the use of an extra 
force sensor.  The full benefits of Algorithm 3 can also be 
derived without a force sensor if the active area of the 
tactile sensor covers the entire probe contact area; 
summing each individual pressure and multiplying by the 
area will give the contact force. 

Both background subtraction algorithms can be 
considered model-based algorithms.  They both are 
making an assumption on the nature of the compliant 
environment.  Based upon that model, the expected 
uninformative background tactile information is 
determined and subtracted off.  The algorithms are also 
task based.  Removing the background information is 
useful when localizing features that are dissimilar to the 

background.  Note that this background should be 
homogenous and elastic for the algorithms to enhance 
performance. If the task were, however, determining the 
stiffness of the compliant environment, subtracting off the 
assumed background information would be 
counterproductive.  Thus, increased knowledge about the 
task and environment can lead to more complex models, 
better algorithms and presumably increased performance 
in teletaction tasks.  

From these results we hope to examine possible 
conclusions as to the nature of the benefit of the 
background subtraction algorithms.  One comment is that 
the algorithms only pass the relevant information for a 
lump finding task.  A naturalness of stimulation is still 
maintained due to the offset pressure encountered when 
using a table mounted (as opposed to finger mounted) 
tactile display.  In other words, people are accustomed to 
feeling a background pressure along with a stimulus when 
in direct contact.  The removal of the background pressure 
compensates for the offset pressure of the user pressing 
his or her finger into the tactile display.  This offset 
pressure is always present in table mounted tactile 
displays; a user cannot apply zero pressure nor is the 
user’s finger flat and flush with the display at zero 
pressure. 

We hypothesize that similar performance benefits 
would still be observed when using background 
subtraction algorithms on a teletaction system with a 
finger mounted tactile display.  Because these algorithms 
target a specific task, the user would again only feel the 
informative parts of the tactile signal.  However, the 
system may trade off task performance for naturalness of 
stimulation.  The user may be able to localize a lump just 
as well, but the user will not feel any background tactile 
information that would normally be present in direct 
contact. 

The mechanism by which background subtraction 
increases localization ability is unclear.  One hypothesis is 
that the background subtraction provides a threshold such 
that, at a given exploration force, only information 
relevant to features is transmitted to the tactile display.  In 
this case, the center of the tactile display would show the 
lump with some noise, while the rest of the display would 
be zeroed.  This is contrasted with the direct transmission 
case where the entire display is showing a noisy signal 
with the lump information only slightly more prevalent. 

The question remains how the background subtracting 
algorithms result in a decrease in lump localization time.  
First, we do not observe a significant speed difference 
between Algorithms 2 and 3, showing users are finding 
the lumps sooner without needing to explore faster.  Also, 
we would not expect a speed difference because subjects 
moved at a speed such that they densely sampled the 
environment considering the update rate of the teletaction 
system.  An update rate of 10 Hz with an average 
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exploration speed of 5 cm/s would give the user tactile 
pressure frames spaced at 5 mm.  Since each tactile frame 
is 1.2 cm wide, users receive information about each 
spatial location multiple times.  Thus, subjects would not 
pass over lumps due to low system bandwidth, only due to 
lack of discernable information in the tactile frames.  Note 
that this exploration speed is twice what has been 
observed with single finger, direct contact lump finding 
tasks [4].  However, this task is a one dimensional 
localization task, while Peine conducted a two 
dimensional task. 

We can hypothesize how background subtraction helps 
reduce lump finding time by first examining lump finding 
strategies.  Most subjects explored the one-dimensional 
environment in two phases: a lump detection phase, and a 
lump localization phase.  During the detection phase, 
subjects were observed to steadily scan the sensor across 
the environment.  Once the lump was found, subjects 
would attempt to center the sensor over the lump in the 
localization phase with repeated small side-to-side 
motions.  If the subject did not detect the lump on the first 
pass, however, subjects would continue to scan the 
environment. We hypothesize that the background 
subtraction reduces exploration time – with the 
uninformative background information removed from the 
tactile signal, the subjects were more likely to detect the 
lumps with a smaller number of scan passes. 

Examination of previous research on lump finding 
allows a comparison of exploration strategy based on 
environment properties.  Earlier direct contact, single 
finger lump detection work showed subjects explored the 
environment using a series of discreet palpations where 
the subject would indent a finger into the compliant 
environment then circularly probe the environment with 
the sides of the finger while maintaining contact between 
the fingerpad and surface.  In the present study, subjects 
explored using a continuous scan, where there is constant 
relative motion between the tactile sensor and the surface.  
The difference may be due to the differences in contact 
friction in the two cases.  In the previous work, the surface 
was sticky, while in our experiment, the model was 
covered with a thin layer of latex along with a lubricant to 
reduce the friction between sensor and model. 

These experiments have specific relevance to 
teletaction tasks in compliant environments.  While the 
specific algorithms used here seem to be well suited to 
table based tactile displays, algorithms based on task and 
environment models should improve task performance for 
any type of tactile display.  Another benefit of the 
described algorithms is that they are simple and cost 
effective to implement – a force sensor is not needed to 
derive most of the benefits of background subtraction. 
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