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1 Abstract

In this paper, we present the results from our work
in the development of a robotic arm with minimal
impedance. The development of such an arm is use-
ful for gentle exploration of unknown objects in un-
structured environments. Similar to a human, the
robotic arm should minimize the contact forces in
the event of unanticipated contact with unknown ob-
jects in the absence of visual feedback. To accom-
plish this, our strategy is to develop a good model
of the robotic system so that we can use low gains
which in turn will lead to low impedance and hence
low contact forces in manipulation tasks in unstruc-
tured environments. The novel idea about this pa-
per is to demonstrate how good modeling and feed-
forward compensation can result in low interaction
forces without any external force sensing. We present
numerous experimental results to demonstrate the
validity of our model and approach.

2 Introduction

One of the most useful human manipulation ca-
pabilities is the ability to use minimum forces to
accomplish a task. An example is grasping an un-
known object in an unstructured environment where
little visual information is available. As the hand
approaches the object, the fingers are soft, so that
even though the position of the object is uncertain,
unexpected contact will generate little force. This
minimizes the likelihood that the object will be dis-
turbed or that the hand will be injured. Later, as the
object is firmly grasped, the stiffness of the fingers
increases to maintain good control of the object’s po-
sition as it is manipulated.

This capability is founded on a number of design,
control, and sensing mechanisms of the hand. The
mechanical impedance of the hand and arm are low
before contact to minimize interaction forces. This
is due to both the soft tissue covering the fingers
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[1] and the compliance at the joints [2]. In both
cases, the tissue and joint stiffness increases in pro-
portion to the applied force, so that before contact
the stiffness is low, minimizing the ensuing inter-
action forces. Other important mechanisms include
visual sensing to determine approximate object loca-
tion and size, and tactile sensing to detect the loca-
tion of contact with the object.

The goal of this paper is to demonstrate the
methodology and results of our approach on the de-
velopment of a humanoid arm using the Whole Arm
Manipulator (WAM) robot. Through careful model-
ing and parameter estimation, we have been able
to vary the impedance of the robotic arm from be-
ing very gentle to very stiff, thereby accomplishing
a variable dynamic range of impedances similar to
a human arm. We are aiming to perfect the perfor-
mance of this robotic arm for a wide variety of tasks
commonly carried out by humans from simple gen-
tle probing to complex manipulation and reaching
tasks. In our initial stage, we are working to create
robotic systems that can perform simple grasping
and manipulation operations on a range of objects in
unstructured environments. Our approach emulates
the mechanisms enumerated above, including vari-
able manipulator impedance and simple visual and
contact sensing. In this paper, we explore one aspect
of these systems: the ability to control a manipulator
to minimize interaction forces in the initial “groping”
phase of acquiring unknown objects. This requires
the ability to move the manipulator through space
with low impedance but with reasonable positional
accuracy. This precludes conventional position con-
trol methods where high feedback gains are used to
minimize position errors, because these high gains
also produce high impedance. Our solution is to use
a model-based approach, where the model predicts
the manipulator torques required to follow the de-
sired trajectory, so that low feedback gains produce
low impedance in the event of unanticipated contact.

In addition to a low impedance position controller,
the manipulator mechanism itself must also have in-
trinsically low impedance. Highly geared manipula-
tors cannot be backdriven by contact forces, so they
must rely on feedback from sensor signals to drive



the motors to emulate low interaction impedance.
While this approach can achieve some measure of
success, the use of a compliant manipulator elimi-
nates the need for contact sensing and guarantees
good performance even in the presence of sensor
noise or failure.

This approach is a straightforward extension of
model-based impedance control with, however, a dif-
ferent focus. The role of dynamic models in control-
ling position in free space has largely been aimed at
improving precision and speed [3, 4]. In impedance
control, dynamic models have often been used to
modify the apparent impedance of the manipulator
in the contact phase [3, 5]. Here we aim to use the
dynamic model to achieve good position control in
free space while at the same time minimizing the
contact impedance and limiting the need for sens-
ing.

Research on controlling the forces generated upon
contact has often been termed “impact control”. In
these studies, the focus is often on switching be-
tween different controllers for the contact phase,
and the use of proximity and/or force sensors to an-
ticipate and control the impact (e.g. [6, 7, 8, 9]).
While these approaches have achieved good results,
the goal here is to create a controller for use in the
free motion phase that does not use sensor feedback
to minimize forces in the event of unanticipated con-
tact. This approach improves robustness by elimi-
nating sensors from the control loop, but still results
in low interaction impedance through the use of a
backdrivable manipulator.

We note that the controller and its implementa-
tion on a low-impedance manipulator are just two
components of a system that can grasp and ma-
nipulate unknown objects in unstructured environ-
ments. Other mechanisms, such as soft contact sur-
face coverings and reactive control methods that al-
ter the controller and commanded trajectory in re-
sponse to contact are also essential. Minimizing the
impedance of the manipulator, however, is a robust
strategy for avoiding large forces in the inevitable
unexpected contacts that could damage the object or
the manipulator.

In this study, we design and implement a low
impedance position controller and examine its per-
formance in an exploration task that requires con-
tact with an unknown surface. In section 3 we
present a description of our experimental testbed,
the Whole Arm Manipulator (WAM) (manufactured
by Barrett Technology, Cambridge, MA) and de-
scribe the modeling procedure for the WAM. In this
section, we estimate the inertial parameters of the
arm and the friction coefficients. In section 4, we
present the results of our experimental system for
trajectory following using very low position and ve-
locity gains in the nonlinear impedance control law.
Finally, some concluding remarks are made in sec-
tion 5.

Figure 1: The Whole Arm Manipulator robot (WAM).

3 Modeling

The Whole Arm Manipulator (WAM) used in these
experiments is a four degree of freedom robot (see
Figure 1). The four joints are known as the base,
shoulder pitch, shoulder roll, and the elbow joint.
The robot is backdrivable, has low friction and in-
trinsically low impedance. It is thus an ideal robot
for developing and implementing the proposed con-
trol laws. For these initial experiments, we use
the WAM as a 3 DOF arm by “locking” the shoul-
der roll joint through high gain proportional-plus-
derivative (PD) control. This results in a stiffness
far higher than the other joints, which are controlled
with the minimum impedance controller.

We used a servo controller board with an onboard
RISC processor for fast floating point computations
(Model DS1103, dSPACE GmbH, Paderborn, Ger-
many). The board has ADC, DAC and incremen-
tal encoder interfaces. A six-component force-torque
sensor (Dual gain, Gamma F/T 130/10 and 32/2.5,
ATI Industrial Automation, Garner, North Carolina)
is mounted on the end of the WAM. On this force-
sensor we have attached a hemispherical cap as
shown in Figure 1, which is used to probe the en-
vironment. The force information is not used in the
servo loop, but measures contact forces to quantify
performance in the exploration task.

3.1 Model

Our goal is to devise a model of the manipulator
that predicts the joint torques required to drive the
robot along a desired trajectory. If this model is ac-
curate, only small feedback torques will be required
to overcome modeling errors and unmodeled distur-
bances. For most of the exploration task, gravity and
friction torque will dominate, with dynamic terms
(inertia, coriolis, etc.) becoming significant at higher
speeds and acceleration. We propose the following
terms in the control law:

Dynamic model + Friction + PD =
Joint torque + Contact torque

where the Dynamic model includes gravity and



dynamics terms, PD represents error-based feed-
back terms, and Contact torque represents the con-
tact forces at the tip resolved to the joints. If we can
derive sufficiently accurate models of the dynamics
and friction, then low PD gains should lead to good
trajectory following and low interaction forces. In
the following sections, we will derive each term in
the above expression and later describe the proce-
dure for parameter identification.

Dynamic model: The schematic of the 3 DOF
WAM is shown in Figure 2. Let mi and Ii, denote
the mass and inertia tensor (assumed to be diago-
nal) at the centroid for link i respectively. Similarly
let li denote the length of link i and ri denote the
distance from the joint to the centroid of link i.

θ2

θ1

θ3

r2

r3

Link 1: m , l , I1 1 1

Link 2: m , l , I2 2 2

Link 3: m , l , I3 3 3

Force sensor Spherical cap

Zo

Xo

Figure 2: Schematic of the WAM as an anthropomor-
phic arm.

Based on the notation in the schematic, we can
write down the dynamic equations for each link i =
(1; 2; 3) of the 3 DOF robot as follows:

3X
j=1

Hij(q)�qj +
3X

j;k=1

�i
jk _qj _qk +Gi(q) = �i;act (3.1)

where q = [�1 �2 �3]
T is the 3 � 1 vector of gen-

eralized coordinates (representing the joint angles),
Hij(q) is the (i; j) entry of the configuration de-
pendent 3 � 3 inertia matrix, H(q), �i

jk are the
Christoffel symbols corresponding to the inertia
matrix H(q), G(q) = [G1(q) G2(q) G3(q)]

T is the
3 � 1 vector of gravitational torques, and �act =
[�1;act �2;act �3;act]

T is a 3� 1 vector of joint torques.
To rewrite the dynamic equations in vector form, we
define the 3� 3 matrix C(q; _q) as follows:

Cij(q; _q) =

3X
k=1

�i
jk _qk

Friction: Although more elaborate friction mod-
els are available [10], we assume a simple model
for friction as an initial approach. We model
the Coulomb friction and viscous friction as inde-
pendent of the joint angle. We define D( _q) =

[D1( _q) D2( _q) D3( _q)]
T as the 3 � 1 vector of viscous

and Coulomb friction torques. Also, to prevent the
stick-slip situation, we define a threshold velocity
band of width 2Æ centered around the origin where
the frictional torque is parabolic with respect to the
joint velocity. Based on this assumption, the expres-
sion for friction torque is given by:

Di( _q) =

�
Vi _qi + Sisign( _qi) : j _qij > Æ

Vi _qi +
Si

Æ
( sign( _qi) _qi

2

Æ
+ 2 _qi) : j _qij � Æ

(3.2)

Interaction with the environment: We as-
sume that the desired end-point impedance of the
manipulator is given by the expression:

M �X +B( _X � _Xo) +K(X �Xo) = Fe (3.3)

where M, B and K denotes the inertia, damping and
stiffness in task space coordinates, X = [x y z]T is
the 3�1 vector of the task space coordinates, and Xo,
_Xo is the desired trajectory and velocity of the tip

of the robot. When the manipulator interacts with
the environment, an additional interaction torque
�e = JT (q)Fe, appears in the dynamic equations,
where J is the manipulator Jacobian. Hence the
modified dynamic equations taking into account the
friction torque and interaction with the environment
is given by:

H(q)�q + C(q; _q) _q +Gi(q) +D( _q) = �act + �e (3.4)

Now the end-effector and joint space velocities are
related by:

_X = J _� (3.5)
Differentiating Equation (3.5) and substituting for
�X and �� from Equation (3.3) and (3.4) and perform-

ing some algebraic manipulation, the final expres-
sion for the nonlinear feedback law for impedance
control in task space coordinates is given by [11]:

�act = G(q) + C(q; _q) _q +D( _q)�HJ�1 _J _q � JTFe

+HJ�1M�1Fe +HJ�1M�1K(Xo �X)

+HJ�1M�1B( _Xo � _X) (3.6)

Equation (3.6) represents the various terms in the
proposed control law above. The terms C, G, and H
represent the model of the manipulator’s dynamics,
and contain parameters that are identified experi-
mentally below. The desired interaction stiffness K
and dampingB multiply the error in position and ve-
locity respectively, and thus correspond to tip space
PD feedback gains. Note that in order to achieve
an apparent interaction inertia M that is different
from the manipulator’s inertia, sensing of the inter-
action force Fe is required [11]. Dependence on this
force sensor signal can be avoided by specifying only
the stiffness and damping, and leaving the manipu-
lator’s intrinsic inertia unchanged. In this case, the
force sensor signal drops out of Equation (3.6).



3.2 Parameter identification

In this section, we discuss the procedure adopted
to estimate the inertial parameters and the friction
torque coefficients, Vi and Si. For estimating the
inertial parameters, it is advantageous to identify
the least number of parameters that need to be es-
timated. Some of the parameters are completely
identifiable, others are identifiable in linear combi-
nations, and some are completely unidentifiable [3].
However, the unidentifiable parameters do not ap-
pear in the dynamic equations and hence pose no
difficulties. To obtain a reasonably good estimate
of the moments of inertia, it is necessary to have a
sufficiently rich excitation, i.e., a trajectory with ap-
propriate velocity and acceleration. We used linear
combinations of sinusoidal profiles with varying am-
plitudes and frequencies to generate sufficiently rich
excitations. To estimate the inertial parameters, we
rewrite the dynamic equations at each data point on
the trajectory in the form:

�i = �i	 i = 1; : : : ; N (3.7)

where N is the total number of data points, �i is the
3� 1 vector of actuator torques at data point i as in
Equation (3.1) and �i is a 3 � 12 matrix which is a
function of the joint angles, angular velocity and an-
gular acceleration. The expression for the unknown
parameters 	 to be estimated is given by:

	 = [Iz1 Ix2 Iz2 +m2r
2
2 Iy2 +m2r

2
2 m2r2 m3r3 Ix3

Iy3 +m3r
3
3 Iz3 +m3r

2
3 V1 V2 V3]

T

Since the last link on the WAM is easily removed,
we weighed it directly and hence it does not appear
in 	 as an unknown inertial parameter to be esti-
mated. Similarly, we estimated the Coulomb friction
coefficients Si independently and hence they also do
not appear in the estimation procedure. The com-
puted values for the Coulomb friction coefficients
and the mass of the elbow is substituted in the dy-
namic Equation (3.7) before estimating 	.

Friction estimation: For estimating the
Coulomb friction coefficients, Si (i = 1; 2; 3), we
moved the WAM in suitable configurations and
locked all the other joints through high-gain PD
control except the joint for which friction torque was
to be estimated. We also applied the feedforward
torque ripple compensation to prevent erroneous
values for friction coefficients.

For estimating the Coulomb friction torque coef-
ficient for the base joint, we controlled the second
joint of the WAM at �2 = 90Æ through PD control to
minimize the inertia and removed the elbow. We ap-
plied torque to the base joint in increments of 1e�4

and recorded the torque value when there was a de-
flection from the zero position of the base joint by 2
degrees. The torque value gave us the estimate S1
for the base joint. Similar measurements provided
estimates for the other two joints.

Estimating 	: For estimating 	, �i and �i are
computed at each data point based on the recorded
values from the encoders. 	 is a 12 � 1 vector of
unknown inertial parameters that needs to be esti-
mated. Based on �i and �i computed at each data
point, we augment Equation (3.7), using the N data
points to form a 3N�12 matrix � and a 3N�1 vector
�. Note that 	 is unchanged at all the data points.
Hence we can rewrite the augmented form of Equa-
tion (3.7) as:

� = �	 (3.8)

Since we have carefully chosen the inertial parame-
ters to be identified, � is full rank and we can com-
pute the pseudo-inverse to estimate 	. Thus 	 is
given by:

	 = (�T�)�1�T�

Using this procedure, we sampled N = 1600 data
points and the estimated value for 	 along with
the measured values for the mass of the elbow and
the Coulomb friction coefficients, Si (i = 1; 2; 3) is:
Iz1 = 0:0917Kg � m2, Ix2 = 0:3331Kg � m2, Iz2 +
m2r

2
2 = 0:4255Kg�m2, Iy2 +m2r

2
2 = 0:2414Kg�m2,

m2r2 = 0:7853Kg �m, m3r3 = 0:3798Kg �m, Ix3 =
0:1939Kg � m2, Iy3 + m3r

3
3 = 0:1022Kg � m2, Iz3 +

m3r
2
3 = 0:1058Kg � m2, V1 = 1:1643N � m=rad=sec,

V2 = 1:9823N�m=rad=sec, V3 = 1:0211N�m=rad=sec,
m3 = 2:7069Kg, S1 = 1:0233N�m, S2 = 1:4985N�m,
S3 = 0:5837N �m.

4 Experiments

4.1 Methods

The minimum impedance controller derived in
Equation (3.6) above is designed to both accurately
follow commanded trajectories in free space and to
generate minimal forces upon contact. In this sec-
tion, we present the results from experiments ex-
amining trajectory following and object exploration
tasks. In particular, we quantify the effects of
impedance, or PD gain, on position accuracy and in-
teraction forces.

4.2 Experiment 1

The first experiment characterized trajectory fol-
lowing performance in free space. The robot was
commanded to follow two trajectories with different
properties. In the first case, the robot end-effector
command was a simple sinusoidal profile:

x(t) = 0:6 + 0:2 sin(
�

4
t):

In the second case, the robot was required to fol-
low a circular quadrant with unequal axes and a dis-
continuous velocity profile at the corners. Figure 3
shows trajectory following results for diagonal stiff-
ness and damping matrices (feedback gains) set to
5 N/m and 1:5 N/m/s respectively. Even with these



very low gain values (e.g. a 1 cm displacement gen-
erates only 5 grams of restoring force), the robot
closely follows the desired trajectory for the sinu-
soidal motion (Figure 3(a)). The circular quadrant
trajectory shown in Figure 3(b) shows the inevitable
errors at the corners where the commanded veloci-
ties are discontinuous. The commanded velocity had
a maximum value of 0:1�. The variation in the rate
at which the error dies out along each segment of the
trajectory is due to differences in the joint trajecto-
ries, which reflects the relative accuracy of the dy-
namic model parameters (especially friction) for the
joints involved. Since we have a reasonable estimate
of the parameters, the trajectory profiles were essen-
tially unchanged when we required the trajectories
to be followed at higher end-effector velocities.
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Figure 3: a) End-effector following a sinusoidal X
motion and b) End-effector following a trajectory
with velocity discontinuities.
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Figure 4: Torque components for X directional sinu-
soidal motion for a) joint 2 and b) joint 3.

Finally, to quantify the effects of the dynamic
model, we recorded the various torque components
generated by the controller for joints 2 and 3 for the
trajectory following task of Figure 3(a). As seen in
Figure 4, the model-generated gravitational torque
for both the joints is substantially higher than both
the feedforward friction torque and the error-based
PD torque. These plots also show that at the low ve-
locities used in this trajectory profile, the magnitude
of the friction torque dominates the PD torque for
both the joints. (At the low speeds used here, which

are appropriate for exploratory grasping, the accel-
eration and velocity dependent dynamic terms are
negligible.) The model-based gravitational and fric-
tion terms clearly succeed in generating the great
majority of the required torque, and enable good tra-
jectory following with low feedback gains.

Object exploration: In this experiment, we ex-
amined the forces generated by the minimum
impedance controller in unanticipated contact. The
end effector was required to follow a prescribed
exploration probing trajectory and a rectangular
wooden object was placed in its planned trajectory
path. The periodic trajectory followed by the robot
consisted of three components: (1) a vertical down-
ward movement of 10 cm; (2) a vertical upwards
movement to where it began the descent; and (3) a
movement out from the robot base along the radial
direction by 6.67 mm. Once it reached the end of
total desired radial travel, the base joint advanced
and the robot repeated its periodic movement in the
radial direction. Thus as the robot advanced over
the wooden block, the spherical cap on the force sen-
sor contacted the block during the descent of the end
effector.

Figure 5 shows typical force profiles (filtered at
100 Hz) measured by the sensor for two values of
stiffness that differ by a factor of 25. Each contact
begins with a fast transient of about 20 N magnitude
that is due to the collision of the end effector with
the block and is largely independent of the stiffness
value. Following this impact, the force magnitude
and duration depend on the stiffness setting. Fig-
ure 6 plots the measured impulse, i.e. the integral of
the force over time, for one cycle of the periodic mo-
tion as a function of the stiffness. This figure shows
that the impulse varies linearly with stiffness, as
predicted for a system where the force is generated
by a linear spring. The extrapolated nonzero value
of the impulse curve at zero stiffness is due to the
impact force, which is a function of the kinetic en-
ergy of the robot arm and not stiffness.
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Figure 5: Tip forces for a) Lower and b) higher (25
times) stiffness values.
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Figure 6: Integral of the interaction force over one
period of the trajectory.

5 Discussion

This work is part of an effort to develop a robot
that can gently interact with objects in unstructured
environments, where object size and position may
be poorly known. This requires the ability to move
the robot to the object with moderate precision but
minimal impedance, so that unanticipated contacts
do not produce large forces that might disturb the
object or damage the robot. The approach imple-
mented here uses a model of the robot’s dynamics
to predict the joint torques that are needed to follow
the trajectory. If the model is accurate, then only
small feedback gains are needed to correct resid-
ual errors in the model and compensate for distur-
bances. Because the WAM robot arm is a highly
backdrivable, low impedance device, the resulting
system has low impedance even without external
sensors.

In terms of tuning the controller to particular task
requirements, the central tradeoff is between posi-
tion error and contact force magnitude. This is il-
lustrated by Figure 6: as stiffness increases, the er-
ror drops and the contact impulse increases, so ap-
propriate performance may be selected. In unstruc-
tured environments where object position is uncer-
tain anyway, there may be no reason to use high
gains that might engender high forces.

One interesting question in this context is what
limits the minimum practical impedance? There ap-
pear to be two factors unrelated to the modeling is-
sues described above. First, external disturbances
can apply forces to the arm that by definition can-
not be modeled. Feedback is thus required for cor-
rection. This is probably not, however, a significant
problem in many situations of interest (e.g. indoor
settings, passive loads). The second factor that lim-
its impedance is the intrinsic impedance of the ma-
nipulator. High impedance devices such as geared
robots must use a force sensor to detect contact,
and then actively change trajectory to avoid apply-
ing large forces. While these systems have met with
some success, issues such as servo delays and sensor
noise can produce undesirable force transients. Our
goal is to develop a system that is intrinsically as low
impedance as possible. We will then add external

force sensors and active control mechanisms that re-
spond to contact, and even proximity or visual sens-
ing that can respond before contact. But because
the manipulator mechanism and control algorithm
have intrinsically low impedance, performance limi-
tations or even failure of these sensors and reactive
controllers will not generate high contact forces.

Another passive mechanism that can limit force
magnitudes is covering the contact surfaces on the
robot arm with soft material. The initial force tran-
sients apparent in Figure 5 are due to the dissi-
pation of the robot’s kinetic energy in the collision.
In this experiment, both the acrylic hemisphere
mounted at the end of the arm and the wooden block
were hard surfaces, so the contact force rose quickly
to a high peak. A layer of rubber would greatly
lower the peak magnitude. Once again, however, the
impedance of the manipulator (i.e. its inertia) is a
key factor in limiting this force, as the kinetic energy
is proportional to the inertia. The rubber layer may
serve other useful functions as well, such as provid-
ing a high-friction gripping surface and a housing for
tactile sensors.
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