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Abstract

Many researchers have proposed imaging the stiffness distribution in breast tissue
to enhance diagnosis of disease.  They suppose that cancers are much stiffer than the
surrounding tissue but to our knowledge no measurements have been made of these
properties that accurately characterize them over a wide range of strain.  We hypothesize
that there is a correlation between elastic modulus in compression and histological
diagnosis (e.g. infiltrating ductal carcinoma, normal glandular tissue, etc.).  We also
hypothesize that the cancer exhibits greater non-linearity; its change in modulus with
strain is greater.  We present a correlation that allows elastic moduli to be estimated from
force displacement curves measured during punch indentation testing.  The tissue
samples tested were obtained during surgery and were tested immediately after removal
from the body.  We found that there is a significant difference in the stiffness and the rate
of increase in stiffness with strain between cancerous and benign breast tissues.
Infiltrating ductal cancer is more than 10 times as stiff as normal fat tissue at 1% strain,
and more than 70 times as stiff at 15% strain.  Compared to normal glandular tissue, this
type of cancer is more than 2.5 times as stiff at 1% strain and nearly 5 times as stiff at
15% strain.  Therefore, relative stiffness is a good indicator of histological diagnosis.
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Introduction

The contrast in elastic stiffness between normal and abnormal breast tissue has

long been recognized (Harris 1994).  Many researchers have proposed techniques for

examining abnormal breast tissue that rely upon the elastic contrast in order to image

them (Garra 1997, Lerner 1987, Chenevert 1997).  Typically these techniques make

images of the tissue at two different applied loads and compute a displacement field from

them.  This displacement field is then used to infer the stiffness of the tissue, given

assumptions about the stress field.  Other researchers have proposed techniques that rely

on pressure distribution measurements made at the surface of the tissue when it is loaded

(Gentle 1988, Sarvazyan 1997, Wellman 1999).  There has even been some work to

noninvasively measure the stiffness of tissue by measuring the propagation of elastic

shear waves using magnetic resonance imaging (Muthupillai 1995).

While these researchers have discussed visualizing the tissue stiffness distribution

within a breast, there is surprisingly little available in the literature on its mechanical

properties that would allow one to draw conclusions about the histological nature of the

tissue directly from the estimated stiffness.  While these tissues display both a viscous

(time dependent) and elastic response a large fraction of the force developed can be

attributed purely to the elastic response.  Given this observation, in order to develop

tractable mathematical models from which to extract material properties, most

researchers have idealized the tissue to be isotropic and elastic (Hayes 1971, Krouskop

1998, Sarvazyan 1995, Skovoroda 1995, Zhang 1997).  In addition, the usual assumption

is that the tissue is nearly incompressible (Fung 1993).  With these assumptions, it is

possible to model the behavior of the tissue using a single elastic or shear modulus.
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Under these assumptions, Sarvazyan (1995) reported a study of 150 specimens of

normal, fibroadenomatous and cancerous tissues which showed that fibroadenomas are

typically 4 times as stiff as normal tissue, while cancer can be as much as 7 times as stiff.

Skovoroda (1995) found that the maximum ratio was about 3:1 for cancer, and as much

as 10:1 for fibroadenomas.  It is unclear what strain level and strain rate were used in

these measurements which makes it possible that the difference in the data can be

explained because the tests may have been conducted at different strain levels.  Krouskop

(1998) recognized that the non-linear behavior of breast tissue requires the computation

of an elastic modulus at more than one strain level.  At 5% precompression strain he

found that the ratio of the elastic modulus of cancerous tissue to that of fat was 5:1, while

at 20% precompression strain the ratio grew to 25:1.  However these previous

characterizations give at most a two-point measurement of the stress-strain relationship

and do no characterize it adequately for all strain levels.  Any new method of

documenting and diagnosing breast cancer through stiffness measurements needs a

thorough characterization of the tissue for all strain levels that we present.

We are also pose more fundamental questions, is there a relationship between

tissue stiffness or change in the stiffness with strain level and histological diagnosis?  To

answer both of these questions we have made a series of measurements of the mechanical

properties of a variety of breast tissues, both normal and abnormal, in compression.  We

have computed their elastic moduli and the constants to an exponential fit to the nominal

stress – nominal strain data computed from force displacement data measured during

punch indentation tests.
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Methods

We have constructed a portable testing device that can be used in the operating

room to measure the mechanical properties of tissue immediately after it is removed from

the body because it is unknown how much they will change with time (Fung 1993).  The

testing instrument shown in Figure 1(a) is used for both uniaxial compression tests and

punch indentation tests of tissue by replacing the punch indentor shown with a 40 mm

diameter flat plate.  A vacuum clamping fixture stabilizes the resected sample that has

been cut to a uniform thickness and placed directly beneath the indentor as shown in

Figure 1(b).  The examiner applies repeated loads to the sample with a 4mm diameter

flat-bottomed punch while the force applied by the punch to the sample is measured using

a uniaxial load cell (Omega Miniature F1000, Omega Engineering Ltd., Stamford, CT).

The load cell is amplified using an instrumentation amplifier and has a full-scale range of

+/- 9.8 N.  The punch position is measured simultaneously using a linear potentiometer

(Midori GreenPot LP100F-5K, Midori America Corporation, Fullerton, CA), with a

range of 100 millimeters.  Data is acquired from each transducer at 2 kHz using a

PCMCIA analog to digital card (PCMCIA16XE50, National Instruments Corp., Austin

TX) and data acquisition software running on a laptop computer.  After calibration, the

uniaxial transducer has a measured gain of 0.994 (r2=1.000) with accuracy better than 5

mN and resolution of 0.16 µN.  The potentiometer has measured gain of 1.000 (r2=1.000)

with accuracy better than 13 µm and a resolution of 1.5 µm.  Given a maximum load of

4.9 N, applied over a minimum resolvable difference of 13 um, these noise specifications

imply that the maximum resolvable elastic modulus is on the order of 40 MPa.  The

maximum stiffness measurable with the instrument is set by the intrinsic mechanical
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stiffness of it with the 4 mm punch in place and is 28 MPa, assuming a 1mm thick

sample.

In order to estimate the elastic modulus of the tissue from the punch indentation

tests we will assume that the different types of tissue (tumor, normal glandular, fat etc.)

can be modeled as homogeneous, and that their behavior in compression can be modeled

as approximately isotropic.  Further, we will make the assumption, as have other

researchers (Fung 1993, Krouskop 1998), that the tissue is approximately incompressible.

This implies that the Poisson ratio is 0.5, and that only an elastic modulus is required to

characterize the tissue - provided we also assume that viscous effects are negligible.  We

will investigate the viscous effects by varying the indentation speed.

In order to determine the elastic moduli of the tissue at various strain levels we

need a mathematical model that relates the nominal stress and nominal strain developed

during punch indentation tests to these moduli.  This model must account for the apparent

increase in stiffness that is due to the geometric non-linearity introduced by the thinness

of the sample.  Fortunately, Hayes (1971) and Zhang (1997) present a correlation that can

be adapted for this purpose.  For a thin specimen of linearly elastic material, force and

displacement are related by

)/,/(
3
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provided we assume that the material is incompressible (Poisson ratio = 0.5).  Th radius

of the indentor is a, the thickness of the specimen is h, and the displacement with respect

to the initial contact point with the surface is x=xm-x0 as shown in Figure 2.  The

empirical factor K(a/h,x/h) has the form

( ) 01 / KhxKK += (2)



6

where the constants K1 and K0 are presented in Table 1.  If we substitute nominal stress,

F/πa2 and nominal strain, εn=x/h, we get
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Now we recognize that for the tissue specimens nominal stress and nominal strain are

nonlinearly related by the equation
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We recognize that it is possible to compensate for the geometric nonlinearity introduced

by the thinness of the sample by defining

nn E εσ ⋅=* (6)

where *
nσ  is calculated from the measured strain and Equation 4 and can be thought of

as the true stress absent any geometric nonlinearity.  We observe from the data that this

new curve can be fit by an exponential1
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which allows us to calculate E directly from the constants b* and m*.  Differentiating

Equation 3-13 with respect to nε (and ignoring the small variation in b* with strain) gives

                                                          
1  After substituting, the stress-strain relationship still appears to be exponential in the actual data.  If we
substitute equation 11 into equation 12 and then equate this with the right hand side of equation 13, we get
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 is very nearly a constant for the range of

specimen sizes tested, so the observation that the curve is still an exponential should not be surprising.
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 from Equation 5.

These equations were verified by comparing the results of punch indentation

testing of various silicone rubber specimens with uniaxial compression test measurements

made of the same specimens as detailed in Wellman (1999).  The measurements were

repeatable to within 1.8% (one standard deviation).  The punch indentation tests were

well correlated to the uniaxial tests (in a linear fit the slope was 1.08, with y intercept

through zero and r2=0.99).  Therefore these correlations overestimate the stiffness by at

most 8%.

Methods

The tissues tested in this study were obtained during surgery after patients had

signed a written informed consent document.  To minimize any errors introduced from

tissue aging after it is removed from the body, the fresh tissue samples were tested in the

operating room within 10 minutes of excision, and the surgeon identified the gross type

of the tissue (e.g. tumor, surrounding fat, gland etc.)  A sample of the tissue was removed

from the full specimen sent to a pathologist and the histological diagnosis was obtained

(e.g. infiltrating ductal carcinoma).  Each sample was resected to a minimum of 10mm by

10mm and a minimum thickness of 2 mm and then fixed onto the vacuum clamping

apparatus shown in Figure 2.  The samples were kept hydrated with saline solution, and

were tested at room temperature (21 OC +/- 2.5 OC). We preconditioned the samples 10

times with a 2 N load, which was chosen to keep the peak strain in the cancerous tissue

samples at less than 10%.  The instrument is hand operated and therefore it was not

possible to set the strain rate exactly.  In order to estimate the viscous effects the data
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were recorded at a minimum of four strain rates at approximately 50 percent/second, 200

percent/second, 1000 percent/second and 2000 percent/second.  At least ten indentation

trials were performed on each specimen.

Once the stress-strain data were recorded, they were analyzed and curves fit to

them to determine the exponential fit constants and the elastic moduli at various levels of

strain.  Quality of fit was computed from variation accounted for, VAF, which is in turn

computed from percent mean squared error,
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and VAF is simply

MSEVAF −= 1 . (10)

Results

Figure 3 shows that there is a wide range in behavior for the various samples of

tissue tested.  Carcinomas are seen to be highly nonlinear and quite stiff, while fat is

nearly linear and extremely soft.  In multiple indentation tests made at the same strain

rate, there was less than a 3.5% difference in the parameters estimated, across all

specimens tested.  There was slightly more variation in the measurements when

variations in strain rate were considered.  Figures 4(a) and 4(b) show how the nominal

stress – nominal strain curves vary with indentation strain rate for representative samples

of infiltrating ductal carcinoma and fat, respectively.  There is a less than 5% variation in

the modulus estimated for the range of strain rates tested here for all kinds of tissue.

Tables 2 and 3 summarize the results of the testing for the various specimens.

The values in Table 3 were computed from Equation 8 and are extrapolated to 15% strain
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for the cancer specimens.  This was done because pilot testing revealed that the cancer

specimens were damaged by application of strain greater than 10% (the elastic modulus

of the specimen at all strain levels permanently decreased when they were subjected to

larger strains).

Discussion

One result of our testing is that breast tissues can be modeled as primarily elastic

whose properties are independent of strain rate.  Figure 4 makes it clear that there is less

than a 5% change in the parameters estimated across strain rates ranging from 50

percent/second to 2000 percent/second.  This result agrees with Krouskop’s finding

(1998).  It is important to note that there is likely some long time scale force relaxation,

but it is not of interest to the detection applications discussed above because they

typically apply stimuli across much shorter time scales.

The major conclusion of this work is that there is a significant correlation between

tissue histology and stiffness.  As shown in Tables 4, cancerous tissue is not only much

stiffer than fat and normal glandular tissue, but displays a much more non-linear increase

in stiffness (going from about a 10:1 stiffness ratio to approximately a 50:1 ratio as strain

is increased from 1% to 15%).  These figures are reflected in the model fits presented in

Tables 2 and 3, where the amount of nonlinearity is reflected in the constant of the

exponential and the large increase in stiffness from 0.01 strain to 0.15 strain.  For normal

glandular tissue and fat the exponent of the exponential fit is approximately 10, while for

the cancerous tissues it is approximately twice that.  Matched pair t-tests reveal that there

is a significant difference between the cancer and fat and the cancer and gland at all strain

levels (t=4.3 typical, while tsignificant = 2.01, for n=7).
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The fat tissue displays a much closer to linear response than the other tissues

measured (its stiffness only changes by a factor of 3 from 0.01 strain to 0.15 strain while

cancerous tissue increases in stiffness more than 25 times).  We note, as did Krouskop

(1998), that diagnostic specificity may be gained by exploiting this change.  For instance,

if an image of the elastic modulus distribution throughout the breast was made at one

strain level and then the strain level was doubled, all of the tissue compressed would see

an increase in stiffness.  However, the malignant tissues would see a greater increase,

perhaps allowing them to be discriminated from the surrounding tissue with better

resolution than currently available methods.
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(a) (b)

Figure 1: (a) The tissue testing instrument and a close-up photograph (b) showing the
sample location and typical geometry.

Figure 2: The specimen geometry during punch indentation testing.

a/h x/h = 0.01 x/h = 0.1 x/h = 0.15 K1 K0 r2

0.2 1.24 1.36 1.42 1.26 1.23 1.00
0.4 1.70 1.85 1.93 1.67 1.68 1.00
0.6 2.18 2.45 2.61 01 2.15 1.00
0.8 2.80 19 45 4.63 2.75 1.00
1.0 59 4.11 4.38 5.66 54 1.00
1.5 6.08 7.51 8.40 16.48 5.90 1.00
2.0 9.11 11.56 105 28.04 8.81 1.00

Table 1: Constants ( ) 01 / KhxKK += for the fit to Zhang’s (1997) correlation.
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Figure 3: Typical strain-stress curves for 8 different kinds of breast tissue measured at
approximately 500 percent/second indentation strain rate.
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Figure 4: (a) Typical strain stress curves for infiltrating ductal carcinoma at four
different velocities.  There is less than a 5% difference in the modulus across all strains
from the highest to the slowest indentation strain rates.  (b) Typical strain-stress curves
for fat at four different velocities.  There is less than a 4.5% difference in the elastic
modulus at all strain levels between the largest and the smallest strain rates.

Tissue Type N m* SD b* SD VAF (%)
Fat 26 7.4 4.0 4460 2345.6 98.2
Gland 7 12.3 7.4 15174.5 6750.7 96.7
Phyllodes Tumor 1 11.9 0.0 50312.8 0.0 95.9
Papilloma 2 21.4 2.8 17765.2 4201.6 98.3
Lobular Carcinoma 1 20.9 0.0 28269.6 0.0 96.5
Fibroadenoma 5 20.0 1.4 37572.4 6047.4 99.4
Infiltrating Ductal
Carcinoma

25 19.9 5.5 37958.7 6146.7 97.6

Ductal Carcinoma in Situ 1 24.4 0.0 55776 0.0 97.2

Table 2: Average fit parameters for the exponential fit )1(
*

*

*
* −= nm

n e
m
b εσ , standard

deviations of the parameters across specimens (SD), percent mean squared error (MSE)
and number of samples for each of eight different types of breast tissue tested.
No standard deviation is reported for those types for which there was only one specimen.
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Tissue Type Elastic
Modulus
at Strain

0.01

SD Elastic
Modulus
at Strain

0.05

SD Elastic
Modulus
at Strain

0.10

SD Elastic
Modulus
at Strain

0.15

SD

Fat 4.8 2.5 6.6 7 10.4 7.9 17.4 8.4
Gland 17.5 8.6 33 12.0 88.1 66.7 271.8 167.7
Phyllodes Tumor 56.6 0.0 90.8 8.6 164.3 0.0 297.7 0.0
Papilloma 22.2 5.8 54.4 19.7 169.7 80.6 537.8 209.1
Lobular Carcinoma 34.7 0.0 78.9 0.0 221.8 0.0 628.4 0.0
Fibroadenoma 45.5 20.1 100.5 39.6 288.4 110.9 889.2 205
Infiltrating Ductal
Carcinoma

47.1 19.8 115.7 42.9 384.5 126.9 1366.5 348.2

Ductal Carcinoma in Situ 71.2 0.0 188.7 0.0 638.7 0.0 2162.1 0.0

Table 3: Average elastic moduli and the standard deviation of the moduli (SD) for each
of eight different types of breast tissue tested.  SD is not reported for those tissue types
for which there was only one specimen.

Ratio to Fat at
Tissue Type Strain = 0.01 Strain = 0.05 Strain = 0.10 Strain = 0.15

Gland 4 5 8 16
Phyllodes Tumor 12 14 16 17
Papilloma 5 8 16 31
Lobular Carcinoma 7 12 21 36
Fibroadenoma 9 15 28 51
Infiltrating Ductal
Carcinoma

10 18 37 79

Ductal Carcinoma in Situ 15 29 61 124

Table 4: The ratio of elastic modulus of each tissue type to fat at 4 different strain levels.


