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Abstract—  During teleoperation, the automatic identification
of remote environment properties has the potential of im-
proving performance by providing task-specific feedback to
the operator. Similarly, virtual training systems can be cali-
brated using such an automatic identification procedure. For
those properties which can be described by parameterized
constraint equations, this paper provides a method by which
the active constraints can be determined during each portion
of the remote manipulator’s data stream. The parameterized
properties can then be estimated from the appropriate data
stream segments. The approach is validated for peg-in-hole
insertion using a desktop teleoperator system. The proposed
segmentation procedure is compared with manual segmenta-
tion to estimate the geometric properties of the peg and hole.

Index Terms- telemanipulators, property identification, con-
strained motion.

I. INTRODUCTION

In current teleoperation applications, the operator is respon-
sible for interpreting sensor feedback from the remote ma-
nipulator. Subsequent manipulation strategies are based on
this interpretation. In many cases, however, machine per-
ception of the remote environment could enhance the op-
erator’s perception of the environment and thereby dramati-
cally improve task performance. For example, in remedia-
tion of toxic waste dumps, quantitative measurements of the
size and weight of the containers helps to infer their con-
tents and to determine optimal handling strategies [9]. Ad-
ditional application areas include undersea mining and sal-
vage, interplanetary exploration, and the defusing of explo-
sives.

In critical applications such as these, effective operator
training is a significant concern. To address this need, ma-
chine perception can also be used to develop and calibrate
models of the environment for use as real-time simulators
and training systems. Training systems calibrated using ac-
tual feedback data would provide a realistic and safe prac-
tice environment for surgical applications [17], toxic waste
remediation [9], and munitions loading [11]. In contrast,
current methods to calibrate virtual models typically rely on
subjective hand tuning of simplified physical models. Ex-
ceptions to this include the work of Dupont and co-workers
[5], [6] and MacLean [13], in which force-displacement
data is used to recreate the haptic sensations of manipulat-
ing virtual objects.

A general framework for solving the automatic property
identification problem was proposed in [6]. This framework
reduces the solution to solving three subproblems: task de-
composition, data segmentation, and property estimation.
The contribution of this paper is to provide a unified solu-
tion procedure to the segmentation and estimation sub-
problems for those properties which affect the contact be-
tween a manipulated object and the remote environment.
This includes, for example, the contact geometry of the
workpiece and environment.

In the next section, the property identification solution
framework of [6] is summarized. The following section de-
scribes the segmentation and property estimation procedure
developed for contact properties. Given the task decompo-
sition, constraint equations describing the subtask contact
states are developed, parameterized by the unknown contact
properties. The set of active constraints at each instant is
determined using multiple correlation coefficients. The de-
sired properties can then be estimated using least
squares.The subsequent section described an experimental
evaluation of the approach using a tabletop teleoperator
system. The geometric properties of a peg and hole are es-
timated during a planar insertion task. Conclusions are pre-
sented in the final section of the paper.

II. AUTOMATIC PROPERTY IDENTIFICATION

From [6], the identification problem can be formally de-
fined as follows.

Given a task description, T , a sensor data stream, d t( ) ,
and a set of properties to be determined, p , compute esti-
mates of the states, $( )x t , and the properties, $( )p t , for
t tŒ[ , ]0 final .

A task description, T , contains, at a minimum, a specifi-
cation of the desired interactions between objects in the re-
mote environment. Additional detail could indicate which
objects the robot should handle and available grasp configu-
rations. It could also include parameterized models of ob-
jects relating to, e.g., geometry and contact forces.

State, x t( ) , is defined by the manipulated object and a de-
scription of the set of active constraints between it and all
other objects in the environment, including the remote ma-
nipulator. Properties estimated in the identification problem
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are those of the manipulated objects and of those objects
with which they have contact. The latter class includes the
remote manipulator. Examples of such properties are shape,
size, weight, mass distribution, stiffness and friction.

A. Solution Procedure

The following decomposition of the identification problem
into the three subproblems of task decomposition, data
segmentation and property estimation will be used here [5].

1. Task decomposition - the process of resolving a task
T into a minimal sequence of subtasks, si , described
by contact states and their associated sets of properties,
T = = = =s x p s x p s x pq q q1 1 1 2 2 2( , ), ( , ), , ( , )Kn s
where pi , i r= 1, ,K , are subsets of p . Note that an
individual state and/or property may be associated with
multiple subtasks.

2. Data segmentation - Given a task decomposition
T = s s sq1 2, , ,Kn s  and the sensor data stream d t( ) ,
find the time intervals corresponding to each subtask,

( , ), ( , ), , ( , ), , , , , ,t t t t t ti f i f q i q f1 1 2 2 Kn s . To allow for sensor
noise as well as unanticipated states, it is not required
that t tj f j i, ,= +1 . Since there is uncertainty in determin-
ing the time intervals, the j th  interval provides only
estimates of the subtask and state, $s j and $x j , respec-
tively. Data segmentation may be performed either on
or off line. If performed on line, the estimates can be
expressed as functions of time.

3. Property estimation - Given the time intervals
( , ),( , ), ,( , ), , , , , ,t t t t t ti f i f q i q f1 1 2 2 Kn s associated with each

subtask, estimate the desired properties, $p . If this pro-
cedure is carried out on line, the properties can be
written as $( )p t .

The concept of the automatic environment identification
system can be described as follow. As a normal teleoper-
ated task is performed, the system collects such data as task
descriptions and desired properties from the operator. The
resulting forces and motions are received from sensors in
the remote environment. Visual feedback, as well as inter-
action with the human operator and data segmentation
module, may also be necessary to efficiently decompose the
task into its constituent parts. Based on the deduced se-
quence of subtasks, the data segmentation module associ-
ates subtasks (and thus states) with time segments of the
data stream. The desired properties are then estimated and
used to build and calibrate a model of the remote environ-
ment.  The model can then be used either to provide imme-
diate assistance to the operator or to form the basis of a
training system.

B. Prior Work

This paper focuses on the subproblems of data segmenta-
tion and property estimation. These topics have received
attention in the literature, however, not in the context of
property identification. For example, Pook and Ballard em-
ployed data segmentation in order to understand the quali-

tative control characteristics of an example task performed
on a teleoperated system [16]. Delson and West used hu-
man demonstration to program robots and in the process
had to segment the data into subtasks that facilitated the
generation of a robot program [3]. Eberman employed es-
timation theory to build a contact state observer as a step
toward autonomous manipulation [7].

Segmentation methods described in the literature include
hidden Markov models [10], generalized likelihood ratio
test [7], qualitative reasoning with thresholding [14], neural
networks for off-line segmentation [8] and Petri nets [15].

Most work on property estimation assumes a parameterized
model, e.g., a geometric or contact force model. A signifi-
cant portion of this literature is devoted to robot parameter
identification.  For example, the identification of link iner-
tial parameters has been studied by An et al. [1]. Others
have investigated the identification of kinematic parameters
[4]. In addition, a few authors have addressed identification
of robot payload and environment properties. Methods for
estimating payload inertia appear in the work of Lin and
Yae [12]. Lin and Yae also estimate certain parameters re-
lating to constraints of the operating environment. Con-
straint existence and modeling are studied in [5], and con-
straint parameter identification in [2].

III. CONTACT CONSTRAINT SEGMENTATION AND
ESTIMATION

A model for the manipulated object (and contacting objects)
can, in some cases, be derived from the task description.
Alternatively, an object model can be inferred from visual
and force/displacement data and updated as new data be-
comes available. Given a model, the properties will often
correspond to specific model parameters. They can then be
written as a vector of real numbers, p mŒ¬ . Their esti-
mates, $( )p t can be considered time dependent when estima-
tion is performed on line.

In this paper, we assume that the task decomposition prob-
lem has been solved. Thus the input to the segmentation
problem consists of the task description given by

T = = = =s x p s x p s x pq q q1 1 1 2 2 2( , ), ( , ), , ( , )Kn s (1)

in which the task T has been expressed as a minimal se-
quence of subtasks, si , described by contact states and their
associated property subsets, pi . For each subtask, the con-
tact state descriptions, xi , convey the relationship between
the manipulated object and all the other objects in the envi-
ronment.

Contact states, xi , can be expressed as a set of pairs of pa-
rameterized constraint equations. Each pair is based on the
feasible geometry of contact for the manipulated object and
a particular object (or surface) in the environment. For ex-
ample, point contact between the manipulated object and an
environment object can be expressed as
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Here, f j  and g j  are vector-valued functions of the

j th contact’s coordinates written with respect to body
frames of the manipulated object, ( , , )X Y Zc

m
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m

c
m , and the
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e
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These functions are related through the kinematic closure
equation
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 in which T to
m( )  is a homogeneous transform matrix which

relates the manipulated object body frame, through the re-
mote manipulator’s kinematics, to the remote environment
base frame. Similarly, T to

e ( )  relates the environment object
body frame to the remote environment base frame. At any
instant, these transform matrices are identical for all active
constraints pairs of the form given by (2). If the environ-
ment object is not moving or deforming, the matrix To

e  is
independent of time.

Equations (2) and (3)  are a parameterized description of a
particular contact. The parameters in (2) relate to the ge-
ometry of the contacting objects. For example, it may be
known that the manipulated object is a cylinder, but its
length and radius are unknown parameters. Similarly, the
environment object may be known to be planar, but its
normal and location are unknown.

While it is assumed that the remote manipulator’s configu-
ration is known, T to

m( )  in (3) also depends on the possibly
unknown grasp configuration of  the manipulated object. In
addition, the base frame location of the environment object
may be unknown leading to additional free parameters in
T to

e ( ) .

A sufficient number of constraints must be associated with
a particular contact state in order to be able to solve for the
contact parameters. In particular,

dim( f gj j
j

k

) dim( )+ ≥
=

Â n s
1

3 (4)

where k  is the number of point contacts associated with the
contact state. To see this, consider that, for n  time samples,
there are 6n u+  unknowns and 3n equations in (3). The
6n  unknowns are due to the point contact coordinates in
the manipulated and environment object body frames. The
remaining u correspond to constant parameters in T to

m( )
and To

e . The set of active constraint pairs of the form given
by (2) must introduce at least 3n  equations which leads to
(4). Assuming that the constraints themselves also introduce
v parameters, the number of time samples, n , must satisfy

n u v≥ + (5)

The resulting equations can be arranged in the usual form as
a set of algebraic equations which are linear in the unknown
parameters or their products.

t q= F (6)

Least squares can be used to solve for the parameters. It is
necessary that the trajectory be sufficiently exciting to pre-
clude low row rank of F .

A. Statistical Segmentation and Property Estimation

Segmentation is based on a multiple correlation coefficient
acceptance test for each contact constraint. Such testing is
conducted when nonzero contact forces are detected. These
forces are inferred from configuration error between the
remote and master manipulator. The segmentation problem
is solved in the following steps.

For each subtask, si :

1. Convert the state description xi  from the form of (2)
and (3) to that of (6).

2. Solve the least squares problem for the parameter val-
ues using a moving data window of width n  satisfying
(5).

3. For each data window, use the estimated parameters,
$q , to compute $ $t q= F . Compute the squared multiple

correlation coefficient,

 R
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4. If R2 ≥ a , accept the data window as corresponding to
state xi  and thus, subtask si . The value of a  can be
selected for any desired value of P Rn ( )2 ≥ a , that is,
the probability that, if the measured variable t j is un-
correlated to the measured variables in F j , the meas-

urements t j j j n, , , ,Fn s = 1K would yield R2 ≥ a .
5. Estimate the parameter values over all accepted data

windows. Using these values, solve for the property
subset estimate, $pi .

6. Substitute as needed the estimates of $pi into all re-
maining subtask state descriptions xi+1  to xq , thereby
decreasing the number of properties remaining to be
estimated.

If, for the last subtask, only a single unestimated parameter
remains, employ a threshold on standard deviation, s b£ ,
instead of correlation factor, in the acceptance test.

IV. EXPERIMENTAL EXAMPLE

A tabletop teleoperator system, composed of two PHAN-
ToM® haptic devices is used to perform a planar peg-in-
hole insertion task. A sketch of the system is shown in Fig.
1. Each device is a 3 degree of freedom manipulator. In or-
der to accomplish the desired task, a gripper is added to the
remote manipulator. The operator controls the master by
manipulating a stylus attached through a passive spherical
wrist. At each sample time, the forward kinematics are
computed such that the position of the end effector with re-
spect to the base frame is known. The workspace is roughly
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a box of dimension 19.5 cm ¥ 27 cm ¥ 37.5 cm. Each de-
vice can exert a continuous tip force of 1.7 N, and a maxi-
mum force of 8.5 N can be achieved.

FIG. 1.  Two PHANToM® haptic devices used as a teleop-
erator system.

The controller uses a symmetric proportional control
scheme based on position and velocity error between the
master and remote manipulators. See equation (8). The
controller gains are adjusted experimentally to achieve sta-
bility and haptic realism. The controller output is taken as
an estimate of the force acting on the robot’s tip. The con-
trol loop rate is approximately 10 kHz.
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A. Contact Constraints

During planar peg-in-hole insertion, four primary contact
states can occur. These contact states are depicted in Fig. 2.
By combining these primary contacts, multiple contact
states can be created. In fact, any contact made during the
insertion can be described by some combination of the four
primary contacts.

Primary contacts

DCBA

Fig. 2.  Primary Contact states.

The primary contacts can be described by equations of the
form of (2) and (3). It is assumed that the body frame of the
environment object (the hole) coincides with the remote en-
vironment base frame. Since the motion is planar, (3) re-
duces to
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In order to express the primary contacts in the form given
by (2), the following assumptions are made.

1. Once grasped, the peg does not slip in the gripper.
2. The constraints are holonomic.
3. The manipulated object (peg) is rectangular and one

axis of its body frame is parallel to the sides of the peg.
4. The hole’s axis is orthogonal to the surface in which it

is drilled.

For each primary contact, equation (2) can be expressed as
follows:
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B. Task Decomposition

Fig. 3 depicts the anticipated progression of contacts during
the insertion task. The operator first slides the peg toward
the hole on the table surface. As the peg enters the hole, it
first slides on one corner of the hole (contact state A). It
then makes contact with both sides of the hole (contacts
AB) and maintains these contacts until the bottom of the
hole is reached (contacts BB'). Finally, it is placed flush
with the right side of the hole (contacts CC') and released.

DB’

CC'ABAB

A A ABcontact

contact

time

timeBB'

Fig. 3.  Sequence of subtasks resulting from task decompo-
sition.

As a means of testing the automatic segmentation proce-
dure, the operator presses a switch during the task at each
change of contact state. Peg position, velocity and angle are
recorded at a rate of 50 Hz.

The goal of the identification procedure is to estimate the
length and width of the peg as well as the location, axis and
width of the hole. For the purposes of data segmentation,
the task decomposition of (14) is assumed given.
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It consists of seven subtasks whose contact states are de-
scribed by (9) and the specified subset of (10)-(13).
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C. Data Segmentation

During data segmentation, position error between the mas-
ter and remote manipulators is used to compute contact
force. At the start of the task, vertical contact force is fil-
tered and thresholded at -0.2 N to identify the end of the
“Carry” subtask.

Once this condition is met, a 30-point sliding data window
is used to test the multiple correlation coefficient (7) for
successive subtasks. The contact sequence for a typical trial
is shown in Fig. 4.

FIG. 4.  Actual and estimated peg and hole locations. The
peg is depicted at one second intervals during  the insertion
task.

Subtask 2, “Slide toward hole,” corresponds to contact B’.
Equations (9) and (11) can be expressed as
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d g
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The results for a typical trial are shown in Fig. 5. During
this subtask, hole axis and peg corner coordinates are esti-
mated. Contact state B’ is accepted as active when
R2 0 99≥ . . As a means of testing the statistical estimation

technique, the operator presses a switch on the master’s
stylus to mark the beginning and end of this subtask.

Based on the depicted moving data window results for M ,
B , γ and δ , it can be seen that the automatic segmentation
is superior to the switch-based segmentation. The latter
(solid line segment) exhibits a time lag. Note that the sec-
ond hatched segment between 6 and 8 seconds corresponds
to the operator “accidentally” sliding the peg corner into the
hole in a straight line. This segment is ignored as the seg-
mentation routine has moved on to subtask 3 at this time.

Fig. 6 depicts the squared correlation coefficient and mov-
ing window estimates for the third subtask, “1-contact peg
insertion.” Equations (9) and (10) for contact A can be ex-
pressed as (16). For this subtask, automatic segmentation
agrees well with manual segmentation in estimating the
hole corner location.

Y Xi
Tip

i i
Tip

i i isin cos cos sinq q d q q
a
b

+ + =
L
NM

O
QP (16)

FIG. 5.  Segmentation of subtask 2, “Slide toward hole”.
Contact state is B’ corresponding to (11). Hatched segment
obtained using correlation coefficient. Solid segment corre-
sponds to manual operator segmentation by switch.

FIG. 6.  Segmentation of subtask 3, “1-contact peg inser-
tion”. Contact state is A. See (10). Hatched segment ob-
tained using correlation coefficient. Solid segment corre-
sponds to manual operator segmentation by switch.

Subtask 4, “2-contact peg insertion,” is the final property-
estimating subtask. The contact state is { }A, B . At this
point, all properties are estimated except hole width, which
depends on ρ . The estimation equation is given by

r q q
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Since ρ  is the single unknown in (17), a correlation coeffi-
cient cannot be computed. Therefore, a threshold test on the
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standard deviation, σ ρ( ) .≤ 08 , is used for automatic seg-
mentation. Fig. 7 shows that this threshold is conservative
in comparison to manual segmentation.

FIG. 7.  Segmentation of subtask 4, “2-contact peg inser-
tion”. Contact state is { }A, B . Hatched segment denotes
where standard deviation, s , of (17) indicates contact B is
active. Solid segment marks manual operator segmentation
by switch.

Numerical comparisons of the estimated properties with
direct measurements appear in Table 1. See Fig. 8 for a
pictorial comparison.

Properties Direct
measurement

Estimated
value

g   (peg width) 12.7 ±0.5 mm 11.2 ±1 mm

d   (peg length) 52.5 ± 0.5 mm 53.4 ±1 mm

 M  (table slope) 0± 0.1 0.03 ±0.5

 B  (table offset) -80.0 ± 0.5 mm -79.1± 1 mm
a  (top-left hole corner x) 53.0 ± 0.5 mm 52.5 ±1 mm

b  (top-left hole corner y) -80.0 ± 0.5 mm -81.08 ±1 mm

r  (right side of hole, x) 80 ±0.5 mm 77.3 ±1 mm

r a-  (hole width) 27.0± 0.5 mm 24.8 ± 1 mm

TABLE 1.  COMPARISON OF ESTIMATED AND DIRECTLY
MEASURED PROPERTY VALUES.

V. CONCLUSIONS

The preceding example has demonstrated that machine in-
terpretation of the remote environment data stream can rival
or exceed that of the operator. The proposed approach to
contact state identification was clearly on a par with that of
the operator. With regard to property estimation, it is appar-
ent that the level of accuracy reflected in Table 1 far ex-
ceeds what could be achieved by the operator using visual
and kinesthetic feedback.

Broad classes of environment identification problems re-
quire segmentation of data based on contact state. For those
applications in which the contact states can be described by
parameterized constraint equations, the proposed segmen-
tation technique holds promise. Clearly, additional work is
needed to extend the technique to more sophisticated phys-

ics-based contact models which incorporate velocity and
force data.

The advantages of the proposed approach provide ample
motivation for doing so. In contrast to training-based statis-
tical models, the current approach advocates the use of
physical contact models. Furthermore, the approach offers
the advantage that threshold values for accepting a particu-
lar contact state as valid are directly tied to a probability of
false acceptance.
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