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Abstract

‘I’/& paper proposes technique for automaticall~ iden-
tifying and modeling the kinematic wwtminta of manip-
ulated objects. The existence of wn.druints is established
by examination of the forces and torques normal and tan-
gential to the object’s motion. Constraints are modeled as
joints tuith wnfigumtion and history dependent forca. To
illustmte these concepts, seveml experimental examples are
presented.

1 Introduction

The need to automatically determine the characteris-
tics of manipulated objects arisea in a numbex of applicw
tions. For example, in remediation of toxic waste dumps,
quantitative measurements of the size and weight of the
containers helps to infer their contents and to determine
optimal handling strategies. Machine perception can also
be used to develop models of objects for use in simula-
tion, planning, and control. Such simulations have already
been used to overcome stability problems related to tele-
operation with significant time delays [2, 12]. Sinilarly,
the mechanical and visual aspects of virtual environment
models can be automatically cahbrated through manipu-
lation of actual tools and objects which are appropriately
instrumented.

In robotics, determination of object properties has fo-
cused on improving control performance. Parameter esti-
mation techniques have been applied to the identification
robot and payload lengths and inertias [1, 9, 10], as well
as to payload geometry and Mlctional characteristics [14].
Throughout th~ work, the kinematic constraints of the
robot and payload are essentially specified a priori. This
is because the kinematic constraints are used explicitly in
the identification process. Constraints impose limits on the
allowable configurations and velocities of the manipulated
object, so when the constraints are known, reduced-order
dynamic equations may be written. Parameter estimation
is then ihrned as a search to determine the best param-
eter values that fit the dynamic equations with the given
input-output data.

In an unstructured environment, constraints may not
be known in advance. Their identification, however, is in
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many cases essential, because they reveal tlmctionrd rela-
tionships among objects in the environment. For example,
if the grasped object moves only in a circular trajectory
and the dominant forces are in the radial direction, then
the object is probably constrained to rotate about an axis,
whose coordinates can be deduced from the observed mo-
tion. Similar inferences may be made about kinematic con-
straints from observing force-motion relationships for slid-
ing or rolliig objects. Identifying such constraints from
manipulation data presents a new and difficult challenge
that is diilerent in character from the previous work on
estimating the values of parameters such as lengths and
inertias.

In this paper we explore the constraint identification
process by examining and analyzing experimental data
from two manipulation tasks. After reviewing background
material on automatic parameter eatimation and prior
work on relevant areas, we describe a simple method for
identifying kkwmatic constraints based on trajectory and
force data. A method for modeliig constraints is then pro-
posed. These techniques are applied to a data from tasks
where a two-fingered planar telemanipulator turns a crank
and inserts a needle. We conclude with a discussion of ex-
temions of the present techniques to more complex tasks.

1.1 Background

A system for automatic parameter identification would
ideally have two types of input: some sort of high-level task
description and the sensor data from execution of the task
[14]. The output would be a quantitative description of the
manipulated objects and their relationships to each other
and the rest oft he environment. The description that can
be generated will obviously be liited to those properties
that are exercised in execution of the task. For example,
we cannot measure the friction coefficient of an object’s
surface if it never slides against another surface. Special
exploratory motions might be required for full characteri-
zation. In any case, the intended use of the identified infor-
mation will prescribe the information needed aud usually
the method to obtain it as well.

Given these inputs, the environment identification prob-
lem is composed of three main sub-problems: task de-
composition, data segmentation, and parameter estimation



[14]. The first step, task decomposition, involves describ-
ing the task and its constituent subtasks in terms of the
mechanical phenomena which can be sensed during exe-
cution. The degree of detail whkh must be provided and
the use of additional sensory information (such as vkdon)
will depend on the application. In complex environments
where mauy objects can interact in complicated ways, it
may be impractical to enumerate all the possible interac-
tions which may occur. In order to concentrate on the
constraint identification problem, we assume in thw paper
that the task is simple and its decomposition into phases
is given.

The next phase, data segmentation, is the reconstruc-
tion of the events or stagea of a manipulation task baaed
on streams of sensory data. ThM is important because the
context or state of the system at any given time will dic-
tate which parameters can be estimated at that time. For
example, to find the coefficient of Elction between the ob-
ject and the manipulator, the estimator must determine
when sliding is occurring. Segmentation of manipulation
data has received considerable attention for skill trauafer-
ence from humans to autonomous robots [8, 13]. In those
studies, the goal was to find the commauds whkh resulted
in successful execution of each subtaak, which may not be
necessary for property estimation. Other work has been
directed at deterfilng the manipulation strategies of hu-
mans [11] or evaluating the performance of teleoperator
systems [4, 5, 6], where task decomposition can be used
to relate performance to subtaak attributes. For property
estimation, segmentation may not require classification of
every portion of the data stream.

Once the data is segmented in time, parameter esti-
mation can proceed using sensory data within each of the
segments, using techniques appropriate for that type of
parameter. In the context of robotics, the identification of
link lengths and inertial parameters has been thoroughly
studied [1,9]. Geometric and &lctional properties of ma-
nipulated objects have been estimated as well [3,14].

2 Constraint Identification

We are interested in identifying and modeling kinematic
constraint forces. Ideally, kinematic constraints reduce the
number of degreea of freedom of au object, as in rigid body
contact. Figure 1 shows the trajectory of au object and the
force vector on the object at one point along the path. If
this object is undergoing pure constrained motion, then
the component of the force normal to the direction of the
instantaneous velocity u, F., is due to the constraint. Ft,
the force in the direction of u, is due to other task-related
interactions, such as frictional forces from sliding on the
constraint surface. Thw suggests that a basic method of
identif@g constraint forces and separating other types of
forces from them is decomposing the net force into compo-
nents normal and parallel to the direction of motion.

In real tasks, non-constraint forces may of course act
normal to the direction of motion. One simple example
is gravity: if an object is carried horizontally, its weight
267
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Figure 1: Vtitors of fome and velocity along tnajecto~ of
motion.

will appear in the vertical “constraint” direction normal to
the motion. In a simple constraint identification system,
diaambiguating such non-constraint forces horn actual con-
straints must rely on the task decomposition, which spec-
ifies the expected interactions. In more aophmticated eys-
tema, it will be possible to use contextual data from other
parts of the task and other sources of information as well.

A number of other complicating factors arise in real
tasks. In particular, the validity of the assumption of rigid
constraints (i.e., no motion in the constrained direction)
will depend on the compliance of both the manipulator and
the object. This may require the consideration of the stiff-
ness and damping at each interface. Furthermore, motion
in the constrained as well as the unconstrained directions
can be both configuration and hwtory dependent. For ex-
ample, under the Coulomb friction model, static friction
may prevent an object from sliding until the friction force
is exceeded. Before sliding, the object is completely con-
strained and no motion occurs, but once sliding begins a
former constraint direction becomes a direction of motion.
As a second example, consider the insertion of a needle
through tissue and into a body cavity. Before contact with
the tissue, motion is unconstrained. After contact, the in-
sertion motion requires a force dependent on the insertion
depth as tissues of dithrent mechanical properties are trw
versed. When the body cavity is penetrated, the resistive
force decreases abruptly. Finally, the force required to ex-
tract the needle may be configuration dependent as well.

The conclusion is that any general approach to modeling
constraints must incorporate both configuration and his-
tory dependence for such properties as stiffness and damp
ing. In addition, these properties may be nonlinear and
only piecewise continuous.

2.1 Approach

Our investigation of constraint identification focuses on
the experimental data presented below, where robot fin-
gers graap au object and execute a task. Our method for
eatablihing the existence of kinematic constraints on the
manipulated object requires the identification of the forces
of constraint. In order to do SO,the foUowing assumptions
are made:

● The forces and torques applied to the manipulated
object by the fingers are known.
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Knowledge of the finger trajectories (and the finger tip
compliance) permits computation of the object trajec-
tory.

Task information specifies the major contributors to
the net forces and torques applied to the manipulated
object.

The approach to identifying constraint forces is as fol-
lows. By the first two assumptions, applied forces and
torques are projected along the tangential and normal di-
rections of motion obtained from velocity data. Baaed on
the third assumption, dynamic equations are written in
terms of the normal and tangential motion coordinates.
Any unexplained forces or torques normal to the direction
of motion are attributed to constraints. Occasionally, teaks
involve thepenetration of constraints, e.g., needle inser-
tion. In these cases, the constraint is identified by unex-
plained forces or torques in the tangential direction. Data
from repeated trials provide a means to refine force and
displacement relationships and to determine if constraints
are unilateral or bdateral. The examples in section 4 will
clar~ th~ procedure.

3 Constraint Modeling

Once the existence of a kinematic constraint has been
established by detecting its forces and torques, it remains
to be modeled. Modeling constraints and modeliig mech-
anism motion have much in common. In fact, constraints
can be expressed as joints with awociated con@uration-
dependent etillhesa, damping, friction, etc. Recall from
kinematics that multiple degree of freedom joints can be
composed from joints which each possess a single degree of
freedom. The three single degree of freedom joints are the
revolute, prismatic and screw joints. Furthermore, screws
with zero and intinite pitch (i.e., the ratio of translational
to rotational motion) can be used to represent revolute and
prismatic joints, respectively. This generahty is exploited
in screw theory in which the geometry of the screw is used
as the basis for describing allowable instantaneous motion
of a mechanism.

A screw is defined by its axis, a line in 3?3, and by its
pitch, which has units of length. In applying screw theory
to kinematic chains composed of rigid links, the usual prac-
tice is to describe the instantaneous motion of a particular
link as a linear combination of the configuration-dependent
screws associated with the mechanism’s joints. In this way,
constraints do not explicitly appear in the set of screws or
screw system describing the allowable motion.

Some readers may be familiar with wrenches which
are coaxial force and moments acting along and about a
screw axis. Wrenches are not used explicitly here since we
choose to represent constraints as joints with contiguration-
dependent forces. In particular, we model constraints as
follows.

1. Constraints which am both rigid in comparison to the
manipulator and wnjigumtion independent are mod-
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Figure 2: Screws describing constmined motion during
needle insertion b~ a planar manipulator.

eled in the usual wag by screws describing the allow-
able motion.

2. Condmints not meeting these renditions are modeled

by screws in the wnstmint direction(s) which possew
conjigumtion-dependent properties, e.g., stifiess and
damping.

Consider the insertion of a needle into tissue by a planar
manipulator as shown in F@re 2. Experimental results for
this example appear in the next section. This example is
particularly interesting as the primary motion involvee the
penetration of a constraint surface. Only screws associated
with the three planar degrees of freedom are shown since
the constraints associated with out of plane motion are
considered rigid.

Screws SI and sz, in the horizontal and vertical direc-
tions, respectively, are of infilte pitch (k = co) and rep-
resent allowable translations. Screw 89 is of zero pitch
(k = O) and represents rotation in the plane. For any
configuration of the needle in whkh contact is not made
with the tissue, there are no constraint forces associated
with the screws. As the needle penetrates the tissue, con-
straint forces and torque whkh are dependent on penetra-
tion depth, can be associated with S1, 92 aud SS.

4 Experimental Examples

We now apply these ideaa to the data from two tasks.
To avoid the necessity of progr amrning the tasks for au-
tonomous robotic execution, we used a planar, two-tingered
teleoperated hand system controlled by a human operator
[7]. Thw system trades a limitation on the number of joints
for a clean and simple mechanical design. The system hsa
high bandwidth and large dynamic range, which permits
accurate control of contact forces and small motions. The
system is designed to execute tasks that humans usually ac-
complih with a prec~lon pinch grasp between the thumb
and index finger (Fig. 3). The master and remote ma-
nipulators are cinematically identical, with two degrees of
freedom in each tinger, so tinger tip position or force can
be controlled within the vertical plane. The workspace is
9
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Figure3: (a) Master manipulator with openator’s hand.
(b) Remote manipulator.

roughly circular and 75 mm in diameter. Parallelogram
linkages maintain a constant vertical orientation of the
fingertips. Flat, thin fingertips extending downward are
mounted on the two remote manipulator tingers to facili-
tate manipulation of the objects used in the experiments
(Fig. 3b). The manipulator tingertipe were covered with a
2 mm layer of closed-cell foam rubber to incresse compli-
ance and friction. During each task, two-axis strain gauge
force sensors mesaure contact forces on the remote manip-
ulator finger tips, and joint sensors measured the finger tip
positions and velocities.

4.1 Constrained Versus Unconstrained
Motion: Turning a Crank

In the first example, the planar two-fingered hand is
used to turn a crank and to move a block from one place
on a table to another. The crank motion is constrained to
lie on a circle (recorded trajectories are shown in Figure 4)
while the fkee motion of the block is unconstrained. In both
cases, examination of the data indicates that the motions
were essentially quasi-static and inertial terms were neg-
ligible. Furthermore, the tssk decomposition (i.e., our a
priori knowledge of the apparatus behavior) specifws that
the component of the net force applied to the manipulated
object whkh is normal to the direction of motion, F., will
be dominated by gravity, (F9)~. Any remainingcomponent
of Fm will be due to a constraint force, Fc.

F. = (F9)n + Fc (1)

The gravity forces of the crank and block were identified
from the forces tangential to the motion. For example,
from the task decompaeition the force on the block tan-
gential to the direction of motion, Ft, is expected to be of
the form

~~ = (rng), + pFn + CW (2)

where (mg)t is the component of gravity tangential to the
motion, p is a coefficient of friction, c is a viscous coefficient
and v is the object velocity. In Figure 5, Ft for the crank
is plotted along with its least squarea approximation.
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Figure 4 Position of cmnk handle, vectors of applied
fome, and wmputed center of rotation. The vectors show
direction and magnitude of force applied by the robot hand.
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F@re 5: Tangential force, Ft, for the cmnk and the least
squares appmm”mation given by mg = 0.16 N, p = 0.053
and c = 0.010.

To test for the presence of constraints, F. – (F~)~ is
plotted for the crank and block motions in Figure 6. As
expected, the constraint force on the block ia negligible
during its free motion while a significant positive constraint
force can be seen throughout for the crank. The sign of
the constraint force indicatea that the operator was pulling
radially outward on the crank while turning it. Whiie the
crank represents a bilateral radial constraint, the motion of
the operator was insufficient to fully capture thm fact. ThB
example shows how exploratory motions or repeated trials
by ditIerent operators maybe necessary to fully identify a
constraint.

The crank handle and bearings are much stitIer than
the manipulator finger pada. In addition, the constraint is
active for all configurations of the crank. Thus, we employ
rule (1) from section 3 and use a single screw of zero pitch
to describe the constraint. The location of the screw axis in
the plane of motion is equivalent to the center of rotation.
The center of rotation is computed by intersecting normals
to the instantaneous direction of motion for 12 consecutive
0
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Figure 6: Constmint fomes, Fc, for the block and cmnk.

data points and then finding their mean position. Figure 4
depicts the position of the crank handle computed as the
average displacement of the fingers as well as the center
of rotation for three rotations of the crank and the force
vectors applied by the fingera. Drift in the location of the
screw axis is largely due to slippage between the iingers and
the crank handle. Finger stiflnese is relatively unimportant
here, as it only accounts for d~placements of about 0.11
cm. Note that if the fingers were grasping the coupler link
of a four-bar mechanism, the location in the plane of the
screw axis would be configuration dependent. Also note
that the applied force when moving upward (right half of
circle) has a distinct tangential component, but when mov-
ing downward the applied force has a very small tangential
component. Thw ia due to the fact that gravity and fric-
tion forces are additive while moving up but ahnoat negate
each other while going down.

4.2 Configuration Dependent
Constraints: Needle Puncture

In thw example, a hypodermic needle was inserted
through the bottom of a inverted paper cup as shown
in Figure 2 using the manipulator of Figure 3. Skce the
constraints are both configuration and h~tory dependent,
they are modeled using rule 2 of section 3. In particular,
we focus on the constraint force in the direction of needle
insertion which is associated with screw 52. The screw axis
itself can be located using position and velocity data from
the fingers.

As in the previous example, the insertion motion was
quasi-static. Since the constraint force lies in the direction
of motion, the tangential force equation becomes

Ft = (F9)~ + FC (3)

the force Fc ia plotted along with tangential displacement
in Figure 7. The subtasks of free motion, needle insertion,
penetration and extraction can be clearly seen in the data.

The history dependence of the constraint force arises
from two factors. First, the force dependa on the maximum
268
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Figure 7: Constraint force and displacement in insertion
direction. a = fme motion, b = insertion, c = penetmtion,
d = eztmction.

prior insertion depth. This can be seen by the fact that the
extraction force is much smaller than the insertion force.
Secondly, the cup bottom acts as an elastic membrane in
series with the elastic fingerpade. During extraction, the
constraint force dependa on the displacement of both from
their relaxed positions. A model of constraint atitfness can
be obtained by dividing the constraint force by the position
at each point in time. The history dependent stiffness as a
function of time is plotted in Figure 8.

Repeated trials with direction reversals at various
deptha would allow for the identification of a more detailed
model.

5 Conclusion

Kinematic constraints impose limka on the allowable
configurations and velocities of an object. ‘lhditionally,
constraints are used to relate the motions of rigid bodies,
but they are also useful because they provide information
about the functional relationships among objects in un-
structured environments. In this paper we described sim-
ple methods for identifjhg and modeling unknown, com-
pliant kinematic constraints on a manipulated object. Con-
straints are identified, in general, by examining the forces
and torques directed normal to motion. We propose mod-
eling constraints as joints with configuration-dependent
properties. The experimental results presented here suc-
cessfully demonstrate these concepts for two simple planar
systems, including objects that changed mechanical con-
figuration (i.e. puncture) during task execution.

This paper has only begun to examine the many issues
that must be addressed for a complete automatic constraint
identification system. One essential question is the degree
of automation that can be achieved. Thw will be strongly
dependent on the task decomposition, and among the key
questions is how much detail must be specified by the hu-
man programmer, and what representation will be moat
appropriate.
1
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Figure 8: Model of history dependent stifiess. The po-
sition of the needle tip corresponding to each number on
the plot shows wnjigumtion information at key tmnsition
points in the insertion process.

For modeling more complex systems, particularly mech-
anisms, we are investigating the connection between the
constraint identification problem and kinematic synthesis
algorithms. In both cases the motion-force relationship is
specitied and the kinematic structure is to be found. Thw
analogy may permit immediate application of the extensive
techniques developed in previous kinematics research.
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